• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[pt] ANÁLISE EM GRASSMANNIANAS E O TEOREMA DE JOHNSON-LINDENSTRAUSS / [en] GRASSMANIAN ANALYSIS AND THE JOHNSON-LINDENSTRAUSS THEOREM

11 November 2021 (has links)
[pt] Seja V um conjunto de n pontos no espaço euclidiano X de dimensão d. Pelo teorema de Johnson-Lindenstrauss, existe uma projeção entre X e Y, outro espaço de dimensão k bastante menor, com a propriedade que as distâncias entre imagens de pontos de V sejam mantidas dentro de um fator c arbitrariamente próximo de 1. O teorema apresenta uma relação entre d, k e c, indicando a possibilidade de dramáticas reduções de dimensão para representações fidedignas de V. A demonstração emprega as Grassmannianas, as variedades de subespaços de dimensão k em X. São construídas cartas e uma medida homogênea em relação à ação natural do grupo ortogonal na Grassmanniana. O resultado segue estimando através de gaussianas certas integrais de caráter fortemente geométrico. / [en] Let V be a set of n points in the Euclidean space X of dimension d. The Johnson-Lindenstrauss theorem states that there is a projection between X a and Y, another Euclidean space of a smaller dimension k, with the property that images of points of X under projection do not differ by more that a multiplicative factor c arbitrarily close to 1. The theorem presents a relation among d, k and c, indicating the possibility of dramatic dimensional reduction of very faithful representations of V. The proof makes use of Grassmanians, the manifolds consisting of subspaces of dimension k in X. In the text, charts are presented, together with a measure which is homogeneous with respect to the natural action of the orthogonal group on the Grassmanian. The result follows by taking estimates using gaussians of certain integrals with a strong geometric flavor.

Page generated in 0.0506 seconds