• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5897
  • 1902
  • 688
  • 680
  • 261
  • 225
  • 148
  • 128
  • 103
  • 75
  • 74
  • 74
  • 74
  • 74
  • 74
  • Tagged with
  • 12658
  • 2240
  • 1696
  • 1575
  • 1341
  • 991
  • 837
  • 831
  • 815
  • 688
  • 687
  • 663
  • 659
  • 627
  • 615
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Carbon dioxide capture methods for industrial sources.

Osman, Khalid. January 2010 (has links)
In order to reduce the rate of climate change, particularly global warming, it is imperative that industries reduce their carbon dioxide (CO2) emissions. A promising solution of CO2 emission reduction is Carbon dioxide Capture and Storage (CCS) by sequestration, which involves isolating and extracting CO2 from the flue gases of various industrial processes, and thereafter burying the CO2 underground. The capture of CO2 proved to be the most challenging aspect of CCS. Thus, the objective of this research was to identify the most promising solution to capture CO2 from industrial processes. The study focussed on capturing CO2 emitted by coal power plants, coal-to-liquids (CTL) and gas-to-liquids (GTL) industries, which are common CO2 emitters in South Africa. This thesis consists firstly of an extensive literature review detailing the above mentioned processes, the modes of CO2 capture, and the various CO2 capture methods that are currently being investigated around the world, together with their benefits and drawbacks in terms of energy penalty, CO2 loading, absorption rate, capture efficiency, investment costs, and operating costs. Modelling, simulation, and pilot plant efforts are also described. The study reviewed many CO2 capture techniques including solvent absorption, sorbent capture, membrane usage, hydrate formation, and newly emerging capture techniques such as enzyme based systems, ionic liquids, low temperature cryogenics, CO2 anti-sublimation, artificial photosynthesis, integrated gasification steam cycle (IGSC), and chemical looping combustion The technique of solvent absorption was found to be the most promising for South African industries. Vapour-liquid-equilibrium (VLE) measurements of solvent absorption using amine blends were undertaken, using blends of methyl-diethanol amine (MDEA), diethanol amine (DEA) and water (H2O) with composition ratios of 25: 25: 50 wt% and 30: 20: 50 wt% respectively, and with CO2 and N2 gases at CO2 partial pressures of 0.5 to 10.5 bar. Experiments were conducted under system pressures of 5 to 15 bar and temperatures of 363.15 and 413.15 K, using a static analytic apparatus. CO2 liquid loading results were analysed and discussed. The experimental data were regressed in Matlab (R2009b) using the Posey-Tapperson-Rochelle model and the Deshmukh-Mather model. The Matlab programmes are presented along with the regressed binary interaction and model parameters. The accuracy of model predictions are discussed. Thereafter an Electrolyte-NRTL model regression and simulation of the absorption process was conducted using Aspen Plus V 7.1. for flue gas compositions, solvent compositions, temperature, and pressure conditions similar to that of process operating conditions. CO2 loading, design factors, CO2 recovery, and CO2 purity results were analysed and compared where appropriate, with experimental results. Finally a general preliminary energy efficiency and cost analysis was conducted based on the simulation results. The main conclusions reached are that the amine solvent blend containing 25:25:50 wt% of MDEA:DEA:H2O, produced higher CO2 loadings for its respective system conditions than other solvents studied and those found in literature. However, absorption of CO2 was found to be highly dependent on system temperature and pressure. The Deshmukh-Mather model provided higher accuracy than the Posey-Tapperson-Rochelle model, producing CO2 loading predictions with a relative error not exceeding 0.04%, in 1.5 to 3 minutes using a dual core processor. Aspen absorption simulations provided significantly lower CO2 loading results than those experimentally obtained, due to the low contact time achieved and higher temperature dependence in the proposed absorption process. Process improvements were highlighted and implemented to increase CO2 recovery and purity. Energy penalty values were found to be higher than those found in literature, but room for process and design improvement was identified and recommendations were given. Investment cost estimates were found to be justifiable and within reason. Limitations of the simulation were also identified and discussed. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2010.
652

名古屋、福岡、諏訪、上高地におけるTSP中の炭素同位体14C

Nakamura, Toshio, Nakajima, Daisuke, Miyabara, Yuich, Higo, Hayato, Ikemori, Fumikazu, 中村, 俊夫, 中島, 大介, 宮原, 裕一, 肥後, 隼人, 池盛, 文数 03 1900 (has links)
名古屋大学年代測定総合研究センターシンポジウム報告
653

An investigation of carbon flows from forest soils, in relation to climatic warming

Cross, Andrew January 2009 (has links)
Rises in anthropogenic CO2 emissions are now widely acknowledged to be responsible for changes in the global climate, with potentially disastrous consequences if these rises continue unchecked. Although knowledge of ecosystem responses to climate change has improved, there are still large underlying uncertainties regarding their response to warming. Of all the ecosystems with the potential to mitigate rises in CO2, forests are arguably the most important because of their huge land area and store of carbon. A large proportion of the carbon stored in forests is found in the soil, and it is the response of this soil carbon to temperature that is the main determinant of a forest’s ability to act as a carbon sink, or indeed source. Understanding the response of soil carbon flux to temperature, as well as the contribution of soil carbon flux to the carbon balance of forests as a whole is crucial in helping to improve modelling approaches. In this thesis I first examined the temperature response of old and new soil organic carbon from a Sitka spruce plantation under controlled laboratory conditions. Both the old and new soil organic carbon showed similar temperature sensitivities after prolonged incubation at 20 °C, thus implying a similar response to increasing temperatures. Using a variety of different methods (root intensity, meshing and stable isotope analysis) I then studied the responses under field conditions. These methods showed that autotrophic respiration was responsible for up to 50 % of total soil respiration, and was more sensitive to temperature than heterotrophic respiration. Finally, I compared the contributions and determinants (particularly temperature and moisture) of soil respiration fluxes to ecosystem fluxes at a temperate (Sitka spruce) and Mediterranean (Maritime pine) forest. Temperature was found to be the dominant driver of soil respiration fluxes at the temperature forest, whilst soil respiration was limited by moisture at the Mediterranean forest. Statistically significant relationships between net ecosystem productivity and soil respiration (and the stable isotope signature of soil respiration) were found at both forests, indicating a close coupling between above-ground processes and soil respiration.
654

The sustainable carbon management of moorlands : spatial distribution and accumulation of carbon on Dartmoor, southwest England

Parry, Lauren Elizabeth January 2011 (has links)
Peatlands are unique habitats that have absorbed large amounts of carbon dioxide and locked it away as carbon buried in peat for millennia. In the UK, blanket peatlands form one of the largest terrestrial stores of carbon (Milne and Brown, 1997). Recent research suggests that the carbon sequestering potential and carbon stores of UK blanket peatlands are at risk from changes in land use practices and climate. Although, to date, little research has considered blanket peatland at a landscape scale and a comprehensive understanding of land use and degradation impact upon carbon sequestration has not been gained. This thesis presents a study of Dartmoor, a blanket peatland in south west England vulnerable to climate change (Clark et al, 2010). A landscape scale carbon inventory, using a methodology designed for blanket peatlands is presented. Nearly 1000 peat depths and 30 cores were taken using stratified sampling across Dartmoor’s landscape. Functional relationships between peat depth, bulk density and carbon content and topographic parameters were found. In arc GIS 9.3 these were used to model landscape scale carbon, this estimates that Dartmoor contained 9.7 (-2.91 + 2.97) Mt of carbon, a value similar to that of the national inventory (Bradley et al, 2005). The thesis then considers the impact of drainage and degradation on carbon accumulation. Fifteen cores were dated from a drained, degraded site with a history of burning and control site using Spheroidal Carbonaceous Particles (SCPs) and radionuclide techniques. Previous studies have raised concern surrounding accuracy dating recent peats. Results indicate that although dating was largely successful, some discrepancies existed related to poor calibration of SCPs and mobility of radionuclides. To avoid error in dating, it was concluded that multiple dates should be used per core. With consideration of this, carbon accumulation was found to be active but significantly lower in the degraded site and unchanged in the drained site. Further analysis suggested that this outcome may vary with changing management and topographic situations. Future carbon accumulation at a landscape scale was calculated under different scenarios. This found degradation could potentially reduce carbon sequestration on Dartmoor by up to 32%. Economic valuation of accumulation values was used to demonstrate how this data could be used to inform management. This thesis provides an insight into the carbon storage and threats to Dartmoor, an under investigated, yet threatened blanket peatland environment. This helps broaden the spatial
655

Nanostructured carbon-based thin films : prediction and design

Goyenola, Cecilia January 2015 (has links)
Carbon-based thin films are a vast group of materials of great technological importance. Thanks to the different bonding options for carbon, a large variety of structures (from amorphous to nanostructured) can be achieved in the process of film synthesis. The structural diversity increases even more if carbon is combined with relatively small quantities of atoms of other elements. This results in a set of materials with many different interesting properties for a wide range of technological applications. This doctoral thesis is about nanostructured carbon-based thin films. In particular, the focus is set on theoretical modeling, prediction of structural features and design of sulfo carbide (CSx) and carbon fluoride (CFx) thin films. The theoretical approach follows the synthetic growth concept (SGC) which is based on the density functional theory. The SGC departure point is the fact that the nanostructured films of interest can be modeled as assemblies of low dimensional units (e.g., finite graphene-like model systems), similarly to modeling graphite as stacks of graphene sheets. Moreover, the SGC includes a description of the groups of atoms that act as building blocks (i.e., precursors) during film deposition, as well as their interaction with the growing film. This thesis consists of two main parts: Prediction: In this work, I show that nanostructured CSx thin films can be expected for sulfur contents up to 20 atomic % with structural characteristics that go from graphite-like to fullerene-like (FL). In the case of CFx thin films, a diversity of structures are predicted depending on the fluorine concentration. Short range ordered structures, such as FL structure, can be expected for low concentrations (up to 5 atomic %). For increasing fluorine concentration, diamond-like and polymeric structures should predominate. As a special case, I also studied the ternary system CSxFy. The calculations show that CSxFy thin films with nanostructured features should be possible to synthesize at low sulfur and fluorine concentrations and the structural characteristics can be described and explained in terms of the binaries CSx and CFx. Design: The carbon-based thin films predicted in this thesis were synthesized by magnetron sputtering. The results from my calculations regarding structure and composition, and analysis of precursors (availability and role during deposition process) were successfully combined with the experimental techniques in the quest of obtaining films with desired structural features and understanding their properties.
656

Fossil clam shells reveal unintended carbon cycling consequences of Colorado River management

Smith, Jansen A., Auerbach, Daniel A., Flessa, Karl W., Flecker, Alexander S., Dietl, Gregory P. 28 September 2016 (has links)
Water management that alters riverine ecosystem processes has strongly influenced deltas and the people who depend on them, but a full accounting of the trade-offs is still emerging. Using palaeoecological data, we document a surprising biogeochemical consequence of water management in the Colorado River basin. Complete allocation and consumptive use of the river's flow has altered the downstream estuarine ecosystem, including the abundance and composition of the mollusc community, an important component in estuarine carbon cycling. In particular, population declines in the endemic Colorado delta clam, Mulinia coloradoensis, from 50-125 individuals m(-2) in the pre-dam era to three individualsm-2 today, have likely resulted in a reduction, on the order of 5900-15 000 tCyr(-1) (4.1-10.6 mol Cm-2 yr(-1)), in the net carbon emissions associated with molluscs. Although this reduction is large within the estuarine system, it is small in comparison with annual global carbon emissions. Nonetheless, this finding highlights the need for further research into the effects of dams, diversions and reservoirs on the biogeochemistry of deltas and estuaries worldwide, underscoring a present need for integrated water and carbon planning.
657

A Carbon-13 and Lithium-6 NMR Study of Alkyllithium Compounds

Jensen, Randy M. 12 1900 (has links)
A variable temperature 13C and 6Li NMR study has been conducted for 6Li-enriched ethyl-, n-propyl-, isopropyl-, n-butyl-, isobutyl-, t-butyl--, isopentyl-, 2-ethylbutyl-, and n-hexyllithium in cyclopentane. Significant differences in the 13C NMR parameters are observed as a function of the alkyl group and temperature. These changes are compared to the 6Li spectra and explained in terms of the aggregates present. 13C-6Li coupling is readily observed in both the 13 6 C and Li spectra of compounds which contain branching at either the alpha or beta carbons of the alkyl group. This coupling has been used to identify the aggregates present in solution and to identify the fluxional behavior of these aggregates.
658

Understanding of coupled physicochemical and mineralogical mechanisms controlling soil carbon storage and preservation

Pitumpe Arachchige, Pavithra Sajeewani January 1900 (has links)
Doctor of Philosophy / Department of Agronomy / Ganga M. Hettiarachchi / Soil carbon (C) sequestration has been recognized as one of the most effective potential mitigation options for climate change. Underlying mechanisms of soil C sequestration/preservation is poorly understood, even after decades of soil C research. The main research objectives of this dissertation were three-fold: (1) enhancing our understanding in mineralogical and physicochemical mechanisms of soil C sequestration in microaggregates, (2) understanding the chemistry of organic C sequestered in soil aggregates, and (3) to determine the resilience of C to different temperature-moisture regimes and physical disturbance in a six-month incubation. An integrated approach was used in obtaining a better picture on mechanisms of C preservation. Two long-term agroecosystems located at the North Agronomy Farm, Manhattan, KS (Mollisols) and the Center of Experimentation and Research Fundacep in Cruz Alta-RS, Brazil (Oxisols) were used. Main plots of both systems were till and no-till. Mollisols consisted of three fertilizer treatments; control, manure/compost and urea. Oxisols had three different crop rotations; simple, intermediate, and complex. Submicron level information gathered by spectromicroscopy approaches, identified the direct preservation of OC structures with the original morphology; suggesting that the preservation of OC is a primary mechanism of C sequestration in these soils. Physical protection and organo-mineral associations seemed to also be involved in OC preservation. Manure/compost addition and no-till favored labile C preservation in aggregates of Mollisols. Significant associations observed between reactive minerals and C pools in Mollisols indicated the significance of organo-mineral associations in OC preservation. Large microaggregates exerted strong C preservation through physical protection and organo-mineral associations. Unlike in Mollisols, Oxisols showed a poor correlation between reactive mineral fraction and organic C which indicated the significance of physical protection over organo-mineral associations. Resilience of sequestred C was significantly affected by temperature across both temperate and tropical soil ecosystems, directly and indirectly. High temperature influenced soil acidity and reactive minerals, ultimately affecting organo-mineral associations. Macromolecular propeties of humic acid fraction showed changes after six months. Overall, direct and indirect evidence from this study suggested that the preservation of SOC is an ecosystem property supporting the newly proposed theories in soil C dynamics.
659

Synthesis and performance evaluation of nanocomposite ceramic-sodalite membranes for pre-combustion CO2 capture

Oloye, Olawale January 2017 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering. 9 February, 2017 / Global climate change and other environmental disasters have been attributed to continuous anthropogenic carbon dioxide (CO2) emission into the atmosphere. Today, researchers are constantly seeking measures to reduce anthropogenic CO2 emission. Traditionally, absorption technology with use of monoethanolamine (MEA) is used for separating / capturing of anthropogenic CO2. However, the use of MEA is associated with numerous shortcomings, including inefficient energy usage, high operating and capital cost, amine degradation, solvent loss and excessive equipment corrosion. Alternatively, zeolite based membrane systems are promising technique that prove handy and useful than the traditional processes (absorption with monoethanolamine). However, zeolitic membranes with zeolite coating on the supports (i.e. thin-film supported zeolite membranes) are susceptible to abrasion and thermal shock at elevated temperatures due to temperature mismatch between the supports and the membranes, making them to lose selectivity at early stages. On the contrary, nanocomposite architecture membranes, synthesized via pore-plugging hydrothermal route, are more thermally stable and membrane defects are controlled. Nanocomposite zeolite (sodalite) membranes have been proposed for gas separations, most importantly in the separation of H2/CO2, a major component in pre-combustion carbon capture. In addition, sodalite, a porous crystalline zeolite made up of cubic array of β-cages as primary building block having cage aperture in the range of 0.26 and 0.29 nm, is a potential candidate for the separation/purification of light molecules such as hydrogen which has a cage aperture of 0.27 nm under certain process conditions. In this work, nanocomposite architecture hydroxy sodalite membrane with sodalite crystals embedded within α-alumina tubes were successfully synthesized using the pore-plugging hydrothermal synthesis technique and characterized using techniques such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The morphology of the synthesized membranes shows that sodalite crystals were indeed grown within the porous structures of the support. Furthermore, Basic Desorption Quality Test (BDQT) and gas separation measurement were conducted to evaluate the quality of the as-synthesized membrane in industrial gas separation applications. The effects of operating variables such as pressure at 1.1 bar, 2.0 bar and 3.0 bar. Also, the effects of temperature were conducted on the nanocomposite membrane at 373 K, 423 K and 473 K. Finally, the gases permeation results were fitted with the well-known Maxwell-Stefan model. Results indicated that, the nanocomposite sodalite / ceramic membrane is a potential candidate for removal of H2 from H2/CO2 mixture. The gas permeation measurement from the one-stage nanocomposite membrane shows that the membrane displayed H2 and CO2 permeance of 3.9 x 10-7 mols-1m-2Pa-1 and 8.4 x 10-8 mols-1m-2Pa-1, respectively. However, the morphology of two-stage nanocomposite membrane shows that the support was more plugged with sodalite crystals and the permeance of H2 and CO2 were 7.4 x 10-8 mol.s-1.m-2.Pa-1 and 1.1 x 10-8 mol.s-1.m-2.Pa-1, respectively. Consequently, the H2/CO2 ideal selectivity for the one-stage nanocomposite membrane improved from 4.6 to 6.5 in the two-stage nanocomposite membrane. In conclusion, the two-stage synthesized membrane shows better improvement. The porous support was well plugged and separation performance was evaluated. However, occluded organic matters present in the cages of hydroxy sodalite could have adverse effect on the gas permeation performance of the membrane. It is expected that an organic-free sodalite supported membrane (such as silica sodalite supported membrane) could out-perform the hydroxy sodalite supported membrane reported in this work in term of membrane flux because there will be enough pore space for gas permeation. / MT2017
660

Efeitos da temperatura e da concentração de CO e CO2 sobre a eletrocatálise da oxidação de hidrogênio em eletrodos à base de Pt e Mo / Temperature and concentration effects of CO and CO2 on the electrocatalysis of hydrogen oxidation on Pt and Mo based electrodes

Nepel, Thayane Carpanedo de Morais 23 March 2012 (has links)
Um dos grandes desafios a ser vencido para a utilização em larga escala das células a combustível de eletrólito polimérico alimentada com H2 obtido por reforma é a contaminação da superfície do eletrocatalisador de Pt, usualmente utilizado no ânodo,pelos gases CO e CO2 presentes no combustível. Neste trabalho é apresentado o estudo dos mecanismos de tolerância de materiais formados por Pt e Mo (Pt/C, Pt3Mo2/C e Pt1Mo1/C) aos contaminadores CO e CO2 e a influência da temperatura nesses processos. Os estudos foram realizados por meio de curvas de polarização com medidas de espectrometria de massas (EM) on line, experimentos de EM em circuito aberto e voltametria linear de remoção de CO adsorvido no catalisador em diferentes temperaturas. Para os catalisadores Pt/C e Pt3 Mo2 /C os resultados mostraram um aumento em 10 vezes na tolerância ao CO quando a temperatura de operação da célula é elevada em 20°C (de 85°C a 105°C) e uma tolerância significativamente superior do Pt3Mo2/C em relação à Pt/C. A ocorrência do mecanismo bifuncional, do mecanismo Eley-Rideal e da reação de Troca Gás-Água (do inglês Water Gas Shift - WGS) foi confirmada apenas para PtMo/C; porém, a diminuição do sobrepotencial de oxidação do CO com o aumento da temperatura foi notada para ambos os catalisadores. A reação de WGS é acelerada com a elevação da temperatura, confirmando que a cinética é a determinante da reação.Também foi realizada a quantificação do cruzamento do O2 do cátodo para o ânodo, sua participação na eliminação do CO e a influência da temperatura nesse processo. Observou-se que a oxidação parcial do CO pelo O2 efetivamente ocorre, aumenta com a temperatura, porém pouco contribui no processo global de tolerância dos catalisadores Pt/C e PtMo/C. Em relação ao contaminante CO3, confirmou-se a ocorrência da reação RWGS (WGS reversa) para ambos os catalisadores, assim como a reação RWGS eletroquímica. Em termos de desempenho de célula,excelentes resultados foram obtidos com a mesma operando a 105°C - para Pt3Mo2/C e utilizando uma mistura de H2/CO(75 ppm)/CO2(25%), observando-se sobrepotencial anódico de apenas 40 mV em relação ao hidrogênio puro em densidade de corrente de 1 Acm-2. / One of the biggest challenges to be overcome for the widespread use of polymer electrolye fuel cellsfueled with H2 obtained by reform is the surface contamination of the Pt electrocatalyst, usually used in the anode, by CO and CO2 present in the fuel stream. This work presents a study of the tolerance mechanisms of CO and CO2 contaminants on electrode materials formed by Pt and Mo (Pt /C, Pt3Mo2 /C, and Pt1Mo1/C) and the influence of temperature on these processes. The studies were performed using polarization curves with on line mass spectrometry measurements (MS), MS experiments at open circuit, and linear sweep CO stripping at different temperatures. For Pt/C and Pt3Mo2/C catalysts, results showed a 10 fold increase in the CO tolerance when the fuel cell operating temperature is raised by 20°C (85°C to 105°C) and a significantly higher tolerance of Pt3Mo2/C compared to Pt/C. The occurrence of the so called bifunctional mechanism, Eley-Rideal mecanism and the Water Gas Shift (WGS) reaction was confirmed only for PtMo/C, but the decrease in the CO oxidation overpotential with the increase of temperature was noted for both catalysts. Also a quantification of O2 crossover from the cathode to the anode was carried out, together with an evaluation of its participation in the elimination of CO and the characterization of influence of temperature in this process. It was observed that the partial oxidation of CO by O2 does occur, increases with temperature, but it has little effect in the overall tolerance of Pt/C and PtMo/Ccatalysts. The WGS reaction is accelerated by increasing the temperature, confirming that the kinetics of the reaction is rate determinant. Regarding CO2 contaminant, the occurrence of the RWGS reaction (reverse WGS) and the electrochemical RWGS were confirmed for both catalysts. In terms of cell performance, excellent results were obtained with the cell operating at 105°C for Pt3Mo2/C and using a mixture of H2/CO (75 ppm)/CO2 (25%), observing an anodic overpotential of only 40 mVcompared to pure hydrogen was observed at a current density of 1 Acm-2.

Page generated in 0.0764 seconds