41 |
Tailoring optical properties of light-emitting diodes by nanostructuring with nanospheresZhang, Qian, 张倩 January 2012 (has links)
III-V nitride based light-emitting diodes (LEDs) have experienced rapid developments during past decade, proving their potential to substitute conventional incandescent bulbs and fluorescent lamps to fulfil energy-efficient and sustainable lighting needs. Tremendous endeavours have been made to improve the performance of LEDs, most of which focused on enhancing the internal and external quantum efficiencies. However, other optical properties of LEDs remain to be explored for a more flexible way of using LEDs in various applications. Therefore, this thesis proposes two nanostructuring strategies through the use of nanospheres to tailor the optical properties of LEDs. The nanostructured LEDs are demonstrated enable light emission with reduced divergence, or becomes polarized. The monolithic modifications are free of external optics and thus eliminate light loss, meanwhile providing manipulability of optical emission from LEDs.
Firstly, close-packed indium-tin-oxide (ITO) micron-lenses with dimension of the order of wavelength have been integrated onto InGaN LEDs aiming at reducing the emission divergence. The sub-micron lens arrays are patterned by nanosphere lithography with silica nanosphere serving as an etch mask on ITO layer, leaving the semiconductor layer damage-free. An enhancement of up to 63.5% on optical output power from the lensed LED has been observed. The LED with 500 nm lenses exhibits a 26.8° reduction in emission divergence (full width at half maximum) compared with the bare LED. Three-dimensional finite-difference time-domain simulations performed for light extraction and emission characteristics is found to be consistent with the observed results.
Secondly, polarization behavior of light emitted from InGaN LEDs propagating through a self-assembled polystyrene nanosphere opal film has been studied. Angular-resolved optical transmission of transverse electric (TE) and transverse magnetic (TM) polarized light has been measured. An integrated p/s ratio of 2.16 is observed at a detection angle of 70°, attributed to the suppression of TE mode at particular frequencies by the three-dimensional photonic crystal. Polarization is found to depend strongly on both the photonic bandgap of the opal and the angle of incidence. Theoretical calculations by transfer matrix method yield results consistent with the experimental data. / published_or_final_version / Electrical and Electronic Engineering / Master / Master of Philosophy
|
42 |
Life cycle assessment of LED road lightingChan, Ho-kan., 陳可芹. January 2012 (has links)
It is observed that the power consumption of road lighting is increased with the length of trafficable road in Hong Kong. The energy used in road lighting is increasing, which means that the greenhouse gases (GHGs) emitted from power plant for generating electricity for road lighting is at the same time increasing.
To compare the performance of light emitted diode (LED) road lighting with road lighting of other lamp sources, literature review, life cycle assessment (LCA) and technical assessment are adopted to give an overall comparison. This research focuses more on the environmental impacts of road lighting. LCA is adopted in order to give a comprehensive view on the environmental impact of road lighting. A total of 3 different lamp sources are compared: high pressure sodium (HPS) lamp, induction lamp and light emitted diode (LED) lamp.
From the model result, it is found that due to the low power consumption and long life time, LED and induction lamp road lighting gives generally less environmental impact than HPS road lighting. As induction lamp has a longer life span than LED, the environmental impact of induction lamp road lighting is found slightly less than that of LED road lighting. Taking account the future development in LED technology, leading to longer life time, higher efficacy and lower production cost, LED road lighting is expected to be a replacement for road lighting in Hong Kong for the future. / published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
43 |
A dependency of quantum efficiency of silicon CMOS n+pp+ LEDs on current densitySnyman, LW, Aharoni, H, du Plessis, M 10 October 2005 (has links)
Abstract—A dependency of quantum efficiency of nn+pp+ silicon
complementary metal–oxide–semiconductor integrated lightemitting
devices on the current density through the active device
areas is demonstrated. It was observed that an increase in current
density from 1 6 10+2 to 2 2 10+4 A cm 2 through the active
regions of silicon n+pp+ light-emitting diodes results in an increase
in the external quantum efficiency from 1 6 10 7 to 5 8
10 6 (approximately two orders of magnitude). The light intensity
correspondingly increase from 10 6 to 10 1 W cm 2 mA (approximately
five orders of magnitude). In our study, the highest
efficiency device operate in the p-n junction reverse bias avalanche
mode and utilize current density increase by means of vertical and
lateral electrical field confinement at a wedge-shaped n+ tip placed
in a region of lower doping density and opposite highly conductive
p+ regions.
|
44 |
Polymer blend light-emitting diodesLiu, Yee-Chen January 2012 (has links)
No description available.
|
45 |
Highly efficient hybrid polymer light-emitting diodesLu, Li Ping January 2013 (has links)
No description available.
|
46 |
Electroluminescent and photoluminescent properties of metal-based compoundsLundin, Natasha J, n/a January 2007 (has links)
Organic light emitting diodes (OLEDs) are an emerging display technology with the advantages of being efficient, bright, portable and flexible. In this work, a number of novel compounds have been developed for incorporation into OLEDs as emitting dopants. A series of ligands containing dipyrido[3,2-a:2�,3�-c]phenazine substituted at the 11-position with ethyl ester, bromo-, nitrile and 5-phenyl-1,3,4-oxadiazole moieties have been synthesised. Each of the ligands were coordinated to Re(I), Cu(I), Ru(II) and Ir(III) metal centres. Ligands and complexes were characterised by �H NMR and IR spectroscopy, mass spectrometry and microanalysis. Single crystal X-ray analyses were performed on fac-chlorotricarbonyl(dipyrido[3,2-a:2�,3�-c]phenazine-11-carboxylic ethyl ester)rhenium (triclinic, P-1, a = 6.403(5) Å, b = 10.388(5) Å, c = 16.976(5) Å, α = 84.087(5)�, β = 84.161(5)�, γ = 79.369(5)�, Z = 2, R1 = 0.0536, wR2 = 0.0978), fac-chlorotricarbonyl(11-bromodipyrido[3,2-a:2�,3�-c]phenazine)rhenium.CH₃OH (monoclinic, C2/c, a = 19.506(5) Å, b = 18.043(5) Å, c = 13.320(5) Å, α = γ = 90�, β = 114.936(5)�, Z = 4, R1 = 0.0345, wR2 = 0.0827), fac-chlorotricarbonyl(11-cyanodipyrido[3,2-a:2�,3�-c]phenazine)rhenium (triclinic, P-1, a = 6.509(5) Å, b = 12.403(5) Å, c = 13.907(5) Å, α = 96.88(5)�, β = 92.41(5)�, γ = 92.13(5)�, Z = 2, R1 = 0.0329, wR2 = 0.0701), bis-2,2�-bipyridyl(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)ruthenium triflate.2CH₃CN (triclinic, P-1, a = 10.601(5) Å, b = 12.420(5) Å, c = 20.066(5) Å, α = 92.846(5)�, β = 96.493(5)�, γ = 103.720(5)�, Z = 2, R1 = 0.0650, wR2 = 0.1458) and bis-(2-phenylpyridine-C�,N�)(dipyrido[3,2-a:2�,3�-c]phenazine)iridium(III) hexafluorophosphate.(CH₃)₂CO (triclinic, P-1, a = 13.505(5) Å, b = 16.193(5) Å, c = 19.788(5) Å, α = 92.857(5)�, β = 98.710(5)�, γ = 93.432(5)�, Z = 2, R1 = 0.0494, wR2 = 0.1097).
The ground and excited state properties of the ligands and complexes were investigated by a range of techniques, including electrochemistry, absorption and emission spectroscopy, spectroelectrochemistry and excited state lifetime studies. Complexes of dppz-based ligands typically show MOs which are segregated over either the bpy or phz region of the dppz backbone. The properties of the Ru(II) and Ir(III) complexes of the ligand series investigated in this work were consistent with this model, and the LUMOs of these complexes were assigned as the b₁(phz) phz-localised MO. The Re(I) and Cu(I) complexes of the ligand series appeared to show MOs which were delocalised over the entire dppz ligand.
A modular complex containing an electron transport group, hole transport group and emitting centre was synthesised. The complex fac-tricarbonyl(trans-(E)-1-((2,2�:5�,2��-terthiophen)-3�-yl)-2-(4�-pyridyl)-ethane)(2-(11-dipyrido[3,2-a:2�,3�-c]phenazine)-5-phenyl-1,3,4-oxadiazole)rhenium(I) hexafluorophosphate was oxidised and reduced readily, encouraging efficient transport of both holes and electrons. However, this resulted in the complex having a small band gap and hence a low quantum yield of emission. Emission from this complex appeared to be from more than one state.
The complexes containing the dppz-based ligand series show complicated excited state behaviour. Emission behaviour is consistent with input from more than one state for many of the Re(I), Cu(I) and Ir(III) complexes. The Ru(II) complexes of the ligand series emit from a �MLCT state between metal-based and bpy-based MOs located on the dppz ligands, as is usual for complexes of this type. All complexes containing 11-cyanodipyrido[3,2-a:2�,3�-c]phenazine showed extremely short excited state lifetimes consistent with extremely efficient non-radiative deactivation of the excited state.
Ligands and complexes were incorporated into OLEDs with the structure [ITO/PEDOT:PSS/PVK:BuPBD:dopant/BCP/Alq₃/LiF/Al] to test their ability to behave as emissive dyes. Many of the compounds behaved poorly as dopants due to their low emission quantum yields, and poor alignment of HOMO and LUMO energy levels with those of the other compounds within the device. �MLCT-based emission was achieved through energy transfer from the PVK host for the devices containing chlorotricarbonylrhenium(I) complexes of the ligand series. The OLEDs containing Ru(II) and Ir(III) complexes also emitted from dopant-centred �MLCT states. In these devices, dopant excitation appeared to occur through direct charge trapping from the adjacent hole transport and electron transport layers.
|
47 |
Wafer level LED packaging with integrated DRIE trenches for encapsulation /Zhang, Rong. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (leaves 76-80). Also available in electronic version.
|
48 |
A comprehensive approach to high efficiency light emittersFu, Wai-yuen. January 2009 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2009. / Includes bibliographical references (leaves 59-64). Also available in print.
|
49 |
The design and manufacture of a light emitting diode package for general lighting a thesis /Krist, Michael Stephano. Pan, Jianbiao. January 1900 (has links)
Thesis (M.S.)--California Polytechnic State University, 2010. / Title from PDF title page; viewed on May 10, 2010. Major professor: Jianbiao Pan, Ph.D. "Presented to the faculty of California Polytechnic State University, San Luis Obispo." "In partial fulfillment of the requirements for the degree [of] Master of Science in Industrial Engineering." "March 2010." Includes bibliographical references (p. 88-93).
|
50 |
Power improvement of the InGaN/GaN LED /Feng, Jian. January 2005 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references. Also available in electronic version.
|
Page generated in 0.0706 seconds