• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Resolution Measurements near a Moving Contact Line using µPIV

Zimmerman, Jeremiah D. 01 January 2011 (has links)
A moving contact line is the idealized line of intersection between two immiscible fluids as one displaces the other along a solid boundary. The displacement process has been the subject of a large amount of theoretical and experimental research; however, the fundamental processes that govern contact line motion are still unknown. The challenge from an experimental perspective is to make measurements with high enough resolution to validate competing theories. An experimental method has been developed to simultaneously measure interface motion, dynamic contact angles, and local fluid velocity fields using micron-resolution Particle Image Velocimetry (µPIV). Capillary numbers range from 1.7 x 10^(⁻⁴) to 6.2 x 10^(⁻⁴). Interface velocities were measured between 1.7 µm/s and 33 µm/s. Dynamic contact angles were manually measured between 1.1 µm and 120 µm from the contact line, and calculated from µPIV data to within several hundred nanometers from the contact line. Fluid velocities were measured over two orders of magnitude closer to the contact line than published values with an increase in resolution of over 3400%. The appearance of a recirculation zone similar to controversial prediction below previously published limits demonstrates the power and significance of the method.
2

In Vitro Investigation of Cell-Free Layer Formation in Microchannels: Dependency on the Red Blood Cell Aggregation and Field of Shear

Gliah, Omemah Rajab January 2018 (has links)
Red blood cells (RBCs) form approximately 40 to 45% of the human blood volume, and their behaviour and characteristics are the main determinant of blood properties, such as viscosity. RBCs are deformable species and stack together under low shear rate to form aggregates or rouleaux. Flowing RBCs migrate away from the wall leaving a cell-depleted layer known as the cell-free layer (CFL). This layer contributes to the blood viscosity and exchange between the RBCs and the target cells: a thinner CFL enhances the exchange process by reducing the diffusion distance. The formation of this CFL, however, is not yet completely understood. The goal of this study is to improve the understanding of the formation of the CFL in the micro-flow. This was accomplished by studying the effects of changing both the flow rate and the microchannel geometry on blood flow in microchannels. In this work, 10% hematocrit human blood suspensions were prepared in native plasma and flowed through poly-dimethylsiloxane (PDMS) microchannels of 100 μm x 34 μm cross-section. Investigation of the flowing cells was performed by using micro particle image velocimetry (μPIV) coupled with a high-speed camera. First, the high-speed camera images were processed with customized Matlab programs to detect and measure the CFL thickness and the RBC aggregates sizes. Second, the blood flow velocity profiles were measured using μPIV in order to determine the actual flow rate, the RBCs’ centerline velocity, and the shear rate. The results showed that the increase in both flow rate and shear rate significantly reduced the CFL thickness and RBC aggregates size. Comparison of the upstream and downstream measurements in the bifurcating microchannel showed that the change in microchannel geometry did not significantly influence CFL thickness and RBC aggregate size, while within the daughter branches, RBCs tended to flow close to the inner wall resulting in an undetectable CFL at the inner wall and in a larger CFL at the outer wall of the branch. These in vitro results quantitatively relate CFL thickness and RBC aggregate size at different shear rates. The findings are of immediate interest regarding the understanding of microcirculation and improved designs of microchips.
3

Beitrag zur Optimierung von Reinigungsprozessen im nicht immergierten System unter Anwendung gravitationsgetriebener Flüssigkeitsfilme

Fuchs, Enrico 26 May 2021 (has links)
Die Herstellung hochqualitativer Produkte in der Lebensmittel-, Kosmetik- und Pharmaindustrie erfordert den Einsatz reproduzierbarer Reinigungsprozesse. Häufig wird die nasschemische Reinigung als Cleaning in Place Verfahren angewandt. Diese Arbeit leistet einen Beitrag zur Optimierung von Reinigungsprozessen im nicht immergierten System insbesondere bei der Anwendung gravitationsgetriebener Flüssigkeitsfilme. Inhalte sind Untersuchungen zum Benetzungs- und Strömungsverhalten im Vergleich zur Reinigungswirkung von Flüssigkeitsfilmen. Als Modellverschmutzungen wurden zwei lebensmitteltypische Bestandteile in Kombination mit partikulären Anteilen eingesetzt. Im Ergebnis konnte nachgewiesen werden, dass sich das Reinigungsverhalten der gewählten Verschmutzungen mit der Hydrodynamik am Beispiel von Flüssigkeitsfilmen beschreiben lässt. Zusätzlich wurde ein neuartiger Ansatz zur Optimierung der Reinigungseffizienz durch die Anwendung diskontinuierlicher Flüssigkeitsfilme untersucht. Dadurch konnte gezeigt werden, dass der Ressourceneinsatz gegenüber einer kontinuierlichen Flüssigkeitsfilmströmung signifikant verringert werden kann, wobei die Reinigungszeit nur geringfügig steigt.:Danksagung ... II Inhaltsverzeichnis ... III Verzeichnis der verwendeten Formelzeichen ... VI Abkürzungsverzeichnis ... XVI 1 Einleitung, Motivation und Gegenstand der Arbeit ... 1 2 Grundlagen der Reinigung ... 3 2.1 Begriffserklärung ... 3 2.2 Industrielle Reinigungsprozesse ... 3 2.2.1 Einordnung ... 3 2.2.2 Reinigungsgeräte für die Nassreinigung im nicht immergierten System ... 8 2.3 Reinigungsvorgänge im nicht immergierten System ... 10 2.3.1 Komponenten des Reinigungssystems ... 10 2.3.2 Schmutzhaftmechanismen ... 20 2.3.3 Reinigungsmechanismen und Wirkzusammenhänge ... 23 2.3.4 Reinigungskinetik ... 28 3 Methoden für Reinigungsuntersuchungen ... 32 3.1 Einordnung ... 32 3.2 Industrielle Methoden ... 33 3.3 Wissenschaftliche Methoden ... 35 4 Gravitationsgetriebene Flüssigkeitsfilmströmungen ... 37 4.1 Einteilung von Filmströmungen und Filmkennzahlen ... 37 4.2 Kennzahlen zur Oberflächenbenetzung ... 40 4.3 Filmdicke und Filmoberflächenwelligkeit ... 47 4.3.1 Modellvorstellungen und Kennzahlen ... 47 4.3.2 Experimentelle Methoden ... 50 4.4 Strömungsgeschwindigkeit ... 54 4.4.1 Modellvorstellungen und Kennzahlen ... 54 4.4.2 Experimentelle Methoden ... 58 5 Zielsetzung und Lösungsweg ... 61 5.1 Problemstellung ... 61 5.2 Arbeitshypothese ... 62 5.3 Vorgehen ... 62 5.4 Zusammenhang mit anderen Arbeiten ... 63 6 Material und Methoden ... 64 6.1 Auswahl Substrate ... 64 6.2 Topografiebestimmung ... 64 6.3 Kontaktwinkelmessung ... 66 6.4 Untersuchungsobjekt ... 68 6.5 Grundaufbau der Versuchsanlage ... 68 6.6 Auswahl der Flüssigkeit ... 70 6.7 Festlegung der Einstellparameter für die Strömungs- und Reinigungsmessungen ... 71 6.8 Charakterisierung des Stoffsystems ... 71 6.8.1 Quellverhalten ... 71 6.8.2 Bindungskräfte ... 77 6.9 Hydrodynamik ... 79 6.9.1 Oberflächenbenetzung ... 79 6.9.2 Filmdicke ... 85 6.9.3 Strömungsgeschwindigkeit ... 102 6.10 Reinigungsuntersuchungen ... 115 6.10.1 Auswahl der Modellverschmutzungen ... 115 6.10.2 Auswahl und Konzeption der Messdatenerfassung ... 117 6.10.3 Versuchsaufbau ... 119 6.10.4 Aufnahmeparameter ... 121 6.10.5 Benetzungseinfluss auf die Phosphoreszenzintensität ... 123 6.10.6 Methode zur reproduzierbaren Verschmutzung ebener Substrate ... 125 6.10.7 Überprüfung der Reproduzierbarkeit und Gleichmäßigkeit der Verschmutzungsmethode ... 128 6.10.8 Versuchsablauf ... 130 6.10.9 Messdatenaufbereitung und -auswertung ... 130 7 Versuchsauswertung und Ergebnisse ... 140 7.1 Charakterisierung der Verschmutzung ... 140 7.1.1 Quellverhalten ... 140 7.1.2 Bindungskräfte ... 144 7.1.3 Zusammenfassung der Verschmutzungscharakterisierung ... 150 7.2 Hydrodynamik gravitationsgetriebener Flüssigkeitsfilme ... 151 7.2.1 Oberflächenbenetzung ... 151 7.2.2 Filmdicke und Filmdickenverteilung ... 163 7.2.3 Strömungsgeschwindigkeit ... 171 7.2.4 Zusammenfassung der Hydrodynamik gravitationsgetriebener Flüssigkeitsfilme ... 180 7.3 Reinigungsverhalten gravitationsgetriebener Flüssigkeitsfilme ... 182 7.3.1 Reinigungskinetik ... 182 7.3.2 Gereinigte Zonen ... 185 7.3.3 Einfluss des Flächenverschmutzungsgewichtes ... 187 7.3.4 Einfluss der Betriebsparameter ... 188 7.3.5 Reinigungseffizienz ... 191 7.3.6 Einfluss der Oberfläche ... 193 7.3.7 Fehlerdiskussion ... 195 7.3.8 Zusammenfassung des Reinigungsverhaltens ... 197 8 Vergleich Reinigungsverhalten und Hydrodynamik gravitationsgetriebener Flüssigkeitsfilme ... 198 8.1 Vorbemerkungen zum Vergleich ... 198 8.2 Einfluss Strömungsparameter auf das Reinigungsverhalten ... 198 8.2.1 Einfluss der Filmdicke und Filmdickenverteilung ... 198 8.2.2 Einfluss der Strömungsgeschwindigkeit ... 199 8.3 Einfluss abgeleiteter Größen auf das Reinigungsverhalten ... 201 8.3.1 Einfluss der Wandschubspannung ... 201 8.3.2 Einfluss der Grenzschichtdicke ... 202 8.4 Zusammenfassung des Vergleiches zwischen Reinigungsverhalten und Hydrodynamik ... 205 9 Optimierungsansatz: diskontinuierliche Flüssigkeitsfilme ... 207 10 Zusammenfassung und Ausblick ... 211 Literaturverzeichnis ... 214 Anhangverzeichnis ... 229

Page generated in 0.0169 seconds