• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 79
  • 38
  • 14
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 563
  • 406
  • 148
  • 104
  • 96
  • 77
  • 73
  • 73
  • 67
  • 64
  • 60
  • 49
  • 45
  • 45
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Mathematical Modeling of a P-N Junction Solar Cell using the Transport Equations

Singh, Surjeet 06 June 2017 (has links)
No description available.
362

Design, Development and Validation of UC Film Cooling Research Facility

Kandampalayam Kandasamy Palaniappan, Mouleeswaran January 2017 (has links)
No description available.
363

High Mass X-ray Binaries in Nearby Star-forming Galaxies

Rangelov, Blagoy 18 December 2012 (has links)
No description available.
364

Self-Gravitating Eccentric Disk Models for the Double Nucleus of Μ31

Salow, Robert M. 30 June 2004 (has links)
No description available.
365

Time Dependent Radiation Spectra From Jets of Microquasars

Gupta, Swati 02 August 2007 (has links)
No description available.
366

Black Hole Masses in Active Galactic Nuclei

Denney, Kelly D. 26 August 2010 (has links)
No description available.
367

Structure of the outflow from super-massive black-hole seeds and its impact on the cosmological scales / 超大質量種ブラックホールからのアウトフロー構造と宇宙論的スケールへの影響

Botella Lasaga, Ignacio 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23705号 / 理博第4795号 / 新制||理||1686(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 嶺重 慎, 准教授 前田 啓一, 准教授 野上 大作 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
368

A Search for Astrophysical Radio Transients at Meter Wavelengths

Cutchin, Sean 06 December 2011 (has links)
Astrophysical phenomena such as exploding primordial black holes (PBHs), gamma-ray bursts (GRBs), compact object mergers, and supernovae, are expected to produce a single pulse of electromagnetic radiation detectable at the low-frequency end of the radio spectrum. Detection of any of these pulses would be significant for the study of the objects themselves, their host environments, and the interstellar/intergalactic medium. Furthermore, a detection of a radio transient from an exploding PBH could be a signature of an extra spatial dimension, which would drastically alter our perception of spacetime. However, even upper limits on the existence of PBHs, from transient searches, would be important to discussions of cosmology. We describe a method to carry out an agnostic single-dispersed-pulse search, and apply it to data collected with the Eight-meter-wavelength Transient Array (ETA). ETA is a radio telescope dedicated to searching for transient pulses. It consists of 12 crossed-dipole antenna stands with Galactic-noise-limited performance from 29-47 MHz. There is a vast amount of data collected from an ETA observation. It is therefore greatly beneficial to use a computer cluster, which works in parallel on different parts of a data set, in order to carry out a single-pulse search quickly and efficiently. Each spectrogram in a data set needs to be analyzed individually, without reference to the rest, in order to utilize a computer cluster's capabilities. The data reduction software has been developed for single-dispersed-pulse searches, and is described in this thesis. The data reduction involves sweeping through the collected data with a dedispersion routine assuming a range of dispersion measures. The resulting time series are searched with multiple matched filters for signals above a signal-to-noise threshold. Applying the single pulse search to ~ 30 hours of ETA data did not yield a compelling detection of an astrophysical signal. However, from ≈ 5 hours of interference-free data we find an observational upper limit to the rate of exploding PBHs of r ≈ 4.8 × 10⁻⁷ pc⁻³ y⁻¹ for a PBH with a fireball Lorentz-factor f = 10<sup>4.3</sup>. This limit is applicable to PBHs in the halo of the Galaxy to distances ≲ 2 kpc, and dispersion measures ≲ 80 pc cm⁻³ . We also find a source-agnostic rate limit ≲ 0.25 events y⁻¹ deg⁻² for pulses of duration < 3 s, and having apparent energy densities ≳ 2.6 × 10⁻²³ J m⁻² Hz⁻¹ at 38 MHz. / Ph. D.
369

Computational Fluid Flow Analysis of the Enhanced-Once through Steam generator Auxiliary feedwater system

Sethapati, Vivek Venkata 26 May 2011 (has links)
The once through steam generator (OTSG) is a single pass counter flow heat exchanger in which primary pressurized water from the core is circulated. Main Feedwater is injected in an annular gap on the outer periphery of the steam generator shroud such that it aspirates steam to preheat the feedwater to saturation temperature. An important component of the OTSG and enhanced once through steam generator (EOTSG) is the auxiliary feedwater system (AFW), which is used during accident/transient scenarios to remove residual heat by injecting water through jets along the outer periphery of the heat exchanger core directly on to the tubes at the top of the OTSG. The intention is for the injected water, which is subcooled, to spread into the tube nest and wet as many tubes as possible. In this project, the main objectives were to use first principles Computational Fluid Dynamics to predict the number of wetted tubes versus flow rate in the EOTSG at the AFW injection location above the top tube support plate. To perform the fluid analysis, the losses in the bypass leakage flow and broached hole leakage flow were first quantified and then used to model a 1/8th sector of the EOTSG. Using user defined functions (UDF), the loss coefficients of the leakage flows were implemented on the 1/8th sector of the EOTSG computational model to provide boundary conditions at the bypass flow and leakage flow locations With this method, the number of tubes wetted in the sector of EOTSG for various AFW flow rates was found. Results showed that the number of wetted tubes was in very close agreement to that predicted by experimental-analytical methods by the sponsor, AREVA. With the maximum flow rate of 65 l/s a total of 318 tubes were wetted and the percentage of tubes wetted with broached holes was 8.7%. The analysis on the bypass leakage flow showed that the loss coefficients was a function of the mass flow rate or the flow Reynolds number through the gap and it increased as the Reynolds number increased from 300 to 1600. The experimental and computational loss coefficients agree to within 15% of each other. In contrast, the constant loss coefficient of 1.3 used by AREVA was much higher than that obtained in this study, particularly in the low Reynolds number range. As the Reynolds number approached 3000, the loss coefficients from this study approached the value of 1.3. This value of the loss coefficient was implemented for the bypass flow leakage in the 1/8th sector of the EOTSG model. The analysis on the broached hole leakage flow was performed using a single hole, five holes, and one, two, four and eight rows of broached holes in order to characterize the loss coefficients. The one hole and five hole computational models were validated with experiments. The computational models showed the presence of voids in the leakage flow through the tube support plate (TSP), which were not observed (visually) in the experiments. The characterization of the broached hole leakage in the one, two and four rows showed that the loss coefficient of the control broached hole increased as the number of rows increased. These results indicated that for the same height of water on the TSP, the resistance to leakage flow increased as the number of tubes increased. They also indicated that leakage flow through the broached holes was not solely a function of the height of water above the TSP but also the surrounding geometrical topology and the flow characteristics. However, the analysis done for eight rows showed that the loss coefficient became constant after a certain number of rows as the loss coefficient differed by only 5% from the results of the four rows. From these results it was determined that the loss coefficient asymptotes to an estimated value of 4.0 which was implemented in the broached hole leakage flow in the 1/8th sector of the EOTSG. Computational models of the 1/8th sector of the EOTSG were implemented with the respective loss coefficients for the bypass and leakage flows. Results showed that as the AFW flow rate increased, the percentage wetted tubes increased. The data matched closely with AREVA's experimental-analytical model for flow rates of 14.5 l/s and higher. It was also deduced that complete wetting of the tubes is not possible at the maximum AFW flow rate of 65 l/s. / Master of Science
370

Experiments on Cold-Formed Steel Beams with Holes

Soroori Rad, Behrooz H. 22 June 2010 (has links)
Experimental testing and elastic buckling studies were performed on 68 C-section cold-formed steel joists with unstiffened rectangular web holes. Four Steel Stud Manufacturers Association (SSMA) cross-section types; 800S200-33, 800S200-43, 1000S162-54, and 1200S162-97, were evaluated to explore the influence of holes on local, distortional, and global bucking failure modes. Hole depth was varied in the tests to identify trends in ultimate strength. Ultimate strength was observed to decrease with increasing hole depth for 800S200-33, 1200S162-97 cross-sections. Due to small number of specimen and unidentified behavior of the beams, a more in depth study of the behavior of 800S200-43 and 1000S162-54 beams are necessary. Local buckling of the unstiffened strip above the hole was observed to accompany distortional buckling at the hole for the locally slender 800S200-33 and 1000S162-54 cross-sections. Thin shell finite element eigen-buckling analysis of each joist specimen, including measured cross-section dimensions and tested boundary and loading conditions, were conducted in parallel with the experiments to identify those elastic buckling mode shapes which influence load-deformation response. The distortional and lateral-torsional buckling moments were observed to decrease with increasing hole depth while a contrasting behavior was captured for local buckling modes. A modification to the AISI Direct Strength Method equations for beams with slotted web-holes was compared against the experimental results with predictions lower than tested strength. Initial cross-section imperfections led to inclined webs which decreased the capacity of the beams. The use of a water-jet cutting process was employed successfully to produce accurate holes sizes and locations in each joist specimen and is recommended for researchers and manufacturers as a method for custom fabrication of cold-formed steel members. / Master of Science

Page generated in 0.0378 seconds