• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical study of the non-Oberbeck-Boussinesq effects in turbulent water-filled cavities

Kizildag, Deniz 08 February 2016 (has links)
The work carried out in the framework of the present thesis aims at shedding light into the complex phenomena involved in turbulent water-filled cavities, questioning the validity of the well-established Oberbeck-Boussinesq effects, and determining the influence of these on the flow structure and heat transfer. First, the relevance of the variable thermophyical properties have been submitted to investigation by means of direct numerical simulations of a differentially heated cavity flow using the aspect ratio of a particular prototype. The simulations consider the so-called non-Oberbeck-Boussinesq effects, and study the temperature range for which these effects could be considered relevant. The work has been conducted employing a 2D flow assumption, estimating that this methodology -promoted by the necessity of a compromise between the accuracy and the cost of the simulations- would be valid to detect the non-Oberbeck-Boussinesq effects without the loss of generality, even though the actual flow structures of the flow are inherently 3D. The numerical results have revealed that up to the temperature difference of 30 ºC, Oberbeck-Boussinesq solution can estimate the heat transfer within 1 % error, although the loss of symmetry is certified even for a temperature difference of 10 ºC. Moreover, it has been observed that the boundary layers at hot and cold isothermal confining walls behave differently, such that the boundary layer instabilities and transition to turbulence location move downstream along the hot wall and upstream along the cold wall. As a consequence, the stratification region shifts upwards, giving rise to higher stratification numbers. Later, the non-Oberbeck-Boussinesq effects have been studied considering three-dimensional domain by means of direct numerical simulations, in the quest of analyzing their impact on the three-dimensional flow structure. The results have revealed delayed transition in the hot wall and earlier triggered transition in the cold wall boundary layers. This has been shown to be a consequence of the initial heating of the cavity due to favorable heat transfer properties in the hot wall boundary layer, which results in warmer upper cavity. As time advances, due to the influence of the stratified flow feeding the hot and cold boundary layers, the strength of the natural convection gradually decreases and increases in the hot and cold boundary layers, respectively. When a balance is attained between these two boundary layers, the cold wall boundary is found at a higher equivalent Rayleigh number, justifying its premature transition. Accordingly, the early transitioning cold wall boundary layer is thicker. This boundary layer interacts actively with the hot wall boundary layer, causing vertical oscillations in the transition to turbulent locations on both boundary layers. This interaction is also responsible for the degradation of the already shifted stratification zone. Besides the qualitative agreement in some aspects, this important effect is not captured by means of 2D simulations, which invalidates 2D flow hypothesis when it comes to describing the flow characteristics with non-Oberbeck-Boussinesq effects. As for the heat transfer, the Non-Oberbeck-Boussinesq effects do not necessarily enhance the heat transfer, as Oberbeck-Boussinesq solution is observed to overestimate the Nusselt number by about 3 %. Last but not the least, considering the huge computational resources required for simulating these turbulent natural convection flows with water, and bearing in mind the importance of an appropriate modeling of the present phenomena, different subgrid-scale models have been analyzed in order to predict the thermal and fluid dynamics of the flow within a turbulent water-filled cavity. It has been shown that the performance of the models is directly linked to the accurate prediction of the transition to turbulence, which is the main challenge in the proper modeling of this flow. / El treball realitzat en el marc de la present tesi té com a objectiu analitzar els fenòmens complexos involucrats en la convecció natural en cavitats amb aigua en règim turbulent, qüestionant la validesa de la ben establerta hipòtesi d'Oberbeck-Boussinesq. S'ha estudiat la influència dels efectes Oberbeck-Boussinesq sobre l'estructura de flux i la transferència de calor. En primer lloc, l'efecte de la dependència en la temperatura de les propietats termofísiques variables s'ha estudiat mitjançant simulacions numèriques directes del flux en una cavitat amb aigua escalfada diferencialment, emprant l'hipotèsi de flux 2D. Els resultats numèrics han revelat que per diferències de temperatura fins a 30 ºC, la solució Oberbeck-Boussinesq pot estimar la transferència de calor amb un error màxim d'1%, tot i que la pèrdua de simetria està certificada fins i tot per una diferència de temperatura de 10 ºC. D'altra banda, s'ha observat que les capes límit en les dues parets es comporten de manera diferent, de tal manera que les inestabilitats de la capa límit i el punt de transició es mouen aigües avall en la paret calenta i aigües amunt en la freda. Com a conseqüència d'això, la regió d'estratificació es desplaça cap amunt, donant lloc a un nombre d'estratificació més elevat. Tot seguit, els efectes Oberbeck-Boussinesq s'han estudiat tenint en compte el flux 3D per mitjà de simulacions numèriques directes, en la recerca d'analitzar el seu impacte en l'estructura del flux tridimensional. Els resultats han confirmat la transició retardada a la paret calenta i la transició provocada aigües amunt a la paret freda. S'ha demostrat que aquest fet és una conseqüència de l'escalfament inicial de la cavitat a causa de les propietats de transferència de calor favorables a la capa límit de la paret calenta, el que resulta en un escalfament de la part superior de la cavitat. A mesura que avança el temps, a causa de la influència del flux estratificat que alimenta les dues capes límit, la força de la convecció natural disminueix i augmenta gradualment en la capa límit de les parets calenta i freda, respectivament. Quan s'arriba a un equilibri entre aquestes dues capes límit, la capa límit de la paret freda es troba a un nombre de Rayleigh equivalent superior, justificant la seva transició prematura. En conseqüència, la capa límit de la paret freda és més gruixuda. Aquesta capa límit interactua activament amb la capa de la paret calenta, causant oscil·lacions verticals en el punt de transició en les dues capes límit. Aquesta interacció també és responsable de la degradació de la zona d'estratificació. Aquest important efecte no és capturat per mitjà de simulacions 2D, el que invalida la hipòtesi de flux 2D quan es tracta de descriure les característiques de flux amb efectes no-Oberbeck-Boussinesq. Pel que fa a la transferència de calor, els efectes no Oberbeck-Boussinesq no milloren necessàriament la transferència de calor, tal com s'observa a la solució Oberbeck-Boussinesq al sobreestimar el nombre de Nusselt en un 3%. Finalment, tenint en compte els enormes recursos computacionals necessaris per a la simulació d'aquestes cavitats en règim turbulent amb aigua, i tenint en compte la importància d'una modelització adequat dels fenòmens que s'hi troben, s'han analitzat els diferents models LES utilitzant un cas semblant, però sense efectes Boussinesq. S'ha demostrat que el rendiment dels models està directament relacionat amb la predicció precisa del punt de transició, que és el principal repte en la modelització adequada d'aquest flux.
2

Generation of intense few-cycle phase-stable electric fields: from the mid-IR to soft X-rays

Silva, Francisco José Maia da 29 February 2016 (has links)
Devising new tools that expand our capabilities to sense and manipulate the world enables much of the scientific and technological progress around us. For example, light is increasingly more important as a tool for humanity. Not all light is equal, however - the light that we normally interact on a daily basis (e.g. the sun), despite its serene and directional appearance, exists in a state of ever changing disorder. What one would perceive as a smooth beam of white light is actually an ever changing pattern of colours. However, As the scale over which the colour changes is spatially too small and temporarily too rapid to be resolved by the human eye we perceive it as a smooth white beam. This lack of a clear spatio-temporal structure in naturally occurring light - coherence - limits what can be done with it. If one were to overlap all the frequencies in a temporally coherent beam of light, one could generate an extremely short and powerful pulse. For example, by compressing in time all the colours in sunlight one would generate a light pulse with just a few femtoseconds duration. If such pulse would have a very modest energy (e.g., a Joule), it would have a peak power approaching the PetaWatt - several orders of magnitude more than the total energy production on earth at a given time. When focused on a minuscule spot, the electric field oscillations of this wave would have amplitudes greatly surpassing the electric fields that bind electrons to atoms, or even atoms together in molecules. This implies that by focusing these pulses into matter one can destroy chemical bonds, free the electrons from the influence of the atom's nucleus and even further accelerate these particles away from the interaction region. It follows that with the correct electric field shape, one could control and manipulate matter in new and interesting ways.In this thesis we have dedicated ourselves to the creation and characterisation of intense, few-cycle pulsed sources of light, using several different approaches. In this thesis a light source with more than 3 octaves (450-4500 nm) has been developed through filamentation of intense mid-IR pulses in solids. This source has high repetition rate (100 kHz), high spectral density and absolute carrier-envelope phase stability. Additionally, numerical simulations suggest that the nonlinear propagation dynamics induce self-compression, possibly leading to single-cycle pulses. The scaling of strong field processes such as electron acceleration highly depends on the period or wavelength of the driving electrical field. This has implications for High harmonic generation (HHG) - the longer the wavelength of this field, the higher the energy of the generated photons. In this thesis we have built a high energy pulsed parametric light source at 2100 nm, a wavelength that enables one to generate soft-x-ray photons with energies exceeding 300 eV through phase-matched HHG ¿ and further demonstrated HHG cutoff extension up to 190 eV in Argon, when compared to HHG from 800 nm pulses.When doing HHG, in order to restrict the soft-X-ray emission to a single isolated attosecond pulse one needs to employ a gating technique. In this thesis we have extended the attosecond lighthouse technique up to the Water window (284-543 eV) which is of fundamental interest to study biological processes with unprecendent spatio-temporal resolution and elemental specificity. The routine generation and characterisation of pulses in the single-cycle regime has historically been a challenge. As such sources invariably require extreme nonlinear spectral broadening, the optimisation of the output pulse has always been a limitation. In this thesis we extend the dispersion-scan technique to the single-cycle regime and demonstrate its use as a straightforward way to compress, characterise and phase-stabilise 3.2 fs pulses with >50 GW peak power. We illustrate the steps done to optimise this source to reach the single-cycle regime. / Concebir nuevas herramientas que expandan nuestras capacidades para medir y manipular el mundo habilita gran parte del progreso cientifico y tecnologico que nos rodea. Por ejemplo, la luz es cada vez más importante como herramienta para la humanidad. Sin embargo, no toda la luz es igual - la luz con la cual normalmente interactuamos a diario (por ejemplo, la luz del sol), a pesar de su aspecto sereno y direccional, existe en un estado de constante cambio y disorden. Lo que se podria percibir como un rayo homogeneo de luz blanca es en realidad un patron en constante cambio de color e forma. Sin embargo, como la escala de los cambios de color es espacialmente demasiado pequeña y temporalmente demasiado rapida para ser resuelta por el ojo humano lo percibimos como un rayo blanco homogeneo. Esta falta de una estructura espacio-temporal en la luz natural - coherencia - limita lo que se puede hacer con ella. Si uno superpone todas las frecuencias en un rayo temporalmente coherente de luz, uno genera un pulso de luz extremadamente corto y potente. Por ejemplo, mediante la superposicio¿n en el tiempo de todos los colores en la luz del sol se generaria un pulso de luz con una duracion de pocos femtosegundos. Si tal pulso tiene una energia muy modesta (por ejemplo, un Julio), tendria una potencia de pico alrededor del Petawatt - ordenes de magnitud mas grande que la produccio¿n de energia en la Tierra en un determinado momento. Cuando enfocadas en un punto minusculo, las oscilaciones del campo electrico de esta onda tendran amplitudes superando los campos electricos que unen los electrones a los atomos, o incluso los atomos unos a los otros en moleculas. Esto implica que enfocando estos pulsos en la materia uno puede destruir enlaces quimicos, liberar los electrones de la influencia del nucleo del atomo y acelerar estas particulas. En consecuencia, con la forma de campo electrico correcta, se podria controlar y manipular la materia en formas nuevas e interesantes. En esta tesis nos hemos dedicado a la creacion y caracterizacion de fuentes de pulsos de luz intensos de pocos ciclos, utilizando diversas tecnicas. En esta tesis una fuente de luz con mas de 3 octavas (450-4500 nm) ha sido desarrollada a traves de filamentacion en solidos de impulsos mid-IR intensos. Esta fuente tiene una alta tasa de repeticion (100 kHz), alta densidad espectral y estabilidad de fase. Ademas, simulaciones numericas sugieren que la dinamica de propagacion no lineal induce auto-compresion temporal. El escalamiento de los procesos de campo fuerte, como la aceleracion de electrones, depende en gran medida de la longitud de onda del campo electrico interveniente. Esto tiene grandes implicaciones para la generacion de harmonicos altos (HHG) - mas larga sea la longitud de onda del campo, mayor es la energia de los fotones generados. En esta tesis hemos construido una fuente de luz de alta energia a 2100nm, una longitud de onda que nos permite generar fotones con energi¿as superiores a 300 eV a traves de HHG con phase-matching - y ademas demostrado extension de corte HHG hasta 190 eV en argon, en comparacion con HHG a partir de pulsos a 800 nm. Al hacer HHG, para limitar la emision de rayos-X blandos a un solo pulso de attosegundos aislado, uno necesita emplear una tecnica de gating. En esta tesis hemos extendido la te¿cnica del faro de attosegundos hasta la ventana de la agua (284-543 eV) lo cual posee interes fundamental para estudiar procesos biologicos con resolucio¿n espacio-temporal y especificidad elemental. Como esas fuentes invariablemente requieren un ensanchamiento espectral no lineal extremo, la optimizacion del pulso siempre presenta un problema. En esta tesis hemos extendido la tecnica de dispersion-scan, hasta el regimen de un solo ciclo optico y demostramos su uso como una forma de comprimir, caracterizar y estabilizar la fase de pulsos de 3.2 fs.
3

Effects of vibrations applied to fluids at different gravity levels

Garcia Sabaté, Anna 20 June 2016 (has links)
Due to the increasing interest in space exploration, management of two-phase flows in the absence of gravity has become a key aspect in improving the efficiency of technological applications for space missions. Understanding of two-phase flows is essential in the development of future applications and for the improvement of existing ones, not only in microgravity, but also in hypergravity conditions. In this thesis, the effects of external factors such as high and low frequency vibrations, or rotations on two-phase flows are addressed, when these systems are at different gravity levels. A series of experimental setups were developed in order to explore a wide range of phenomena occurring at different gravity levels. The effects of pressure fields on micron-sized particles in the levitation plane of an acoustic field are discussed. Furthermore, an analysis of the motions of two isolated particles is provided and a method to determine the forces between them is presented. The method allows us to experimentally obtain the order of magnitude of the forces, as well as indirectly provide a measurement of the acoustic pressure inside a micro-channel. Two microgravity experiments adapted to a sub-orbital vehicle were designed and built in order to examine the effects of low frequency vibrations and rotation in two-phase flows. This thesis will further analyse the effects observed in bubbles in different liquids. Bubble shape oscillations have been observed at low vibration frequencies, even though bubble dynamics are affected by the walls of the cell. After vibrations were turned off, the aspect ratio of a bubble in high viscosity fluid decays exponentially. Bubble break-up has been observed in the case of lower surface tension and lower viscosity. Focusing on the distribution of the air bubbles during high and low rotation rates, an analysis is presented on the effects on a low surface tension fluid. An investigation is presented on the injection trajectory of bubbles during rotation showing a reasonable agreement with analytical predictions. The detachment and rise of bubbles and bubble trains while an acoustic field is applied in hypergravity conditions are also addressed. Different effects have been observed in this experiment. Focusing on detachment, we provide an expression for estimating the detachment diameter when an acoustic field is applied. In addition, the effect of bubble trains on terminal velocity is discussed. A numerical analysis is also presented and compared to the experimental data. / Degut a l'increment en l'interès per l'exploració espacial, la gestió de fluids bifàsics en absència de gravetat ha esdevingut un tema clau per la millora de l'eficiència d'aplicacions tecnològiques per a missions espacials. Arribar a entendre els fluids bifàsics és important per al desenvolupament de futures aplicacions i per la millora de les ja existents, no només en condicions de microgravetat sinó també en condicions d'hipergravetat. En aquesta tesi es tracten els efectes que tenen factors externs com vibracions d'alta i baixa freqüència o rotacions, sobre fluids bifàsics, quan aquests es troben en diferents nivells de gravetat. S'han desenvolupat una sèrie de muntatges experimentals per a explorar els diferents fenòmens que succeeixen a diferents nivells de gravetat. S'analitzen els efectes que tenen els camps de pressió sobre partícules micromètriques en el pla de levitació d'un camp acústic. A més, s'analitza el moviment de dues partícules aïllades i es presenta un mètode per a determinar les forces entre elles. Aquest mètode permet obtenir experimentalment l'ordre de magnitud de les forces, així com obtenir indirectament la mesura de la pressió del camp acústic dins del micro canal. S'han dissenyat i muntat dos experiments de microgravetat adaptats a un vehicle suborbital, per estudiar els efectes de vibracions de baixa freqüència i rotació sobre fluid bifàsics. Es presenta una anàlisi dels efectes observats sobre les bombolles. S'han observat oscil·lacions de forma de les bombolles amb vibracions de baixa freqüència, tot i que la dinàmica es veu afectada per les parets de la cavitat. Després d'aturar la relació d'aspecte d'un fluid d'alta viscositat decreix exponencialment. També s'ha observat trencament de la bombolla, en el cas de baixa tensió superficial i baixa viscositat. Pel que fa a rotació, es fa un anàlisis dels efectes que té sobre un fluid de baixa tensió superficial, centrant-nos en la distribució de bombolles d'aire quan la velocitat de rotació és més alta o més baixa. S'estudia la trajectòria de les bombolles injectades durant la rotació, mostrant concordança amb prediccions analítiques. Per últim, abordem el desenganxament i l'ascens de bombolles i trens de bombolles, mentre apliquem un camp acústic en condicions d'hipergravetat. Durant els experiments s'han observat diferents efectes. Mirant el desenganxament, donem una expressió per estimar el diàmetre de la bombolla quan es desenganxa quan s'està aplicant un camp acústic. A més, es discuteixen els efectes sobre trens de bombolles. També es presenta una anàlisi numèric i es compara amb les dades obtingudes experimentalment.

Page generated in 0.1146 seconds