• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Álgebras de incidência hereditárias por partes / Piecewise hereditary incidence algebras

Silva, Marcelo Moreira da 09 December 2016 (has links)
Apresentamos um estudo das álgebras de incidência que são hereditárias por partes, as quais denominamos Phias, piecewise hereditary incidence algebras. Através da aljava com relações, descrevemos as Phias de tipo Dynkin e introduzimos uma nova família de Phias de tipo Dynkin extendido chamada família ANS, em referência a Assem, Nehring e Skowronski. Nessa descrição, o importante método foi o dos cortes em extensões triviais, os quais inspiraram a elaboração de um programa que concebe exatamente os cortes na extensão trivial dada que resultam em álgebras de incidência. Abordamos as Phias &#922\\&#916 de tipo feixes, estudando o &#922\\&#916-módulo sincero canônico M e a álgebra de extensão por um ponto &#922\\&#916[&#924]. Demonstramos que se &#922Q/I é uma álgebra sincera, quase-inclinada canônica de tipo aljava e tipo de representação infinito, então os &#922Q/I-módulos sinceros são excepcionais. Essa conclusão permite construir uma gama de Phias &#922\\&#916[&#924] de tipo selvagem. Exploramos as Phias simplesmente conexas, provando uma resposta positiva para o problema de Skowronski para &#922\\&#916 uma Phia de tipo H, com grafo de objetos inclinantes &#922_D^b (&#919) conexo: o grupo &#919^1(&#922\\&#916) é trivial se, e somente se, a álgebra &#922\\&#916 é simplesmente conexa. Na área homológica, determinamos um limitante superior da dimensão global forte das Phias; mais ainda, ampliamos esse resultado para as álgebras sinceras provando que dada uma álgebra sincera e hereditária por partes, sua dimensão global forte é menor ou igual a três. / We present a study of incidence algebras that are piecewise hereditary, which we denominate Phias. By means of the quiver with relations, we describe Phias of Dynkin type and introduce a new family of Phias of extended Dynkin type, which we call ANS family, in reference to Assem, Nehring, and Skowronski. In this description, the important method was the one of cuts on trivial extensions, inspiring the writing of a program that shows exactly the cuts on the given trivial extension that result on incidence algebras. We approach sheaves type Phias &#922\\&#916, studying the canonical sincere &#922\\&#916-module M and the one-point extension algebra &#922\\&#916[&#924]. We show that if &#922Q/I is a sincere, quasi-tilted canonical algebra of quiver type and infinite representation type, then sincere &#922Q/I-modules are exceptional. This conclusion allows the construction of a wide range of Phias &#922\\&#916[&#924] wild type. We explore the simply conectedeness of Phias, proving a positive answer of the so called Skowronski problem for &#922\\&#916 a Phia H type, with connected quiver of tilting objects &#922_D^b (&#919): the group &#919^1(&#922\\&#916) is trivial if, and only if, &#922\\&#916 is a simply connected algebra. On homology, we determine an upper bound for the strong global dimension of Phias; furthermore, we extend this result for sincere algebras proving that the strong global dimension of a sincere piecewise hereditary algebra is less or equal to three.
2

Álgebras de incidência hereditárias por partes / Piecewise hereditary incidence algebras

Marcelo Moreira da Silva 09 December 2016 (has links)
Apresentamos um estudo das álgebras de incidência que são hereditárias por partes, as quais denominamos Phias, piecewise hereditary incidence algebras. Através da aljava com relações, descrevemos as Phias de tipo Dynkin e introduzimos uma nova família de Phias de tipo Dynkin extendido chamada família ANS, em referência a Assem, Nehring e Skowronski. Nessa descrição, o importante método foi o dos cortes em extensões triviais, os quais inspiraram a elaboração de um programa que concebe exatamente os cortes na extensão trivial dada que resultam em álgebras de incidência. Abordamos as Phias &#922\\&#916 de tipo feixes, estudando o &#922\\&#916-módulo sincero canônico M e a álgebra de extensão por um ponto &#922\\&#916[&#924]. Demonstramos que se &#922Q/I é uma álgebra sincera, quase-inclinada canônica de tipo aljava e tipo de representação infinito, então os &#922Q/I-módulos sinceros são excepcionais. Essa conclusão permite construir uma gama de Phias &#922\\&#916[&#924] de tipo selvagem. Exploramos as Phias simplesmente conexas, provando uma resposta positiva para o problema de Skowronski para &#922\\&#916 uma Phia de tipo H, com grafo de objetos inclinantes &#922_D^b (&#919) conexo: o grupo &#919^1(&#922\\&#916) é trivial se, e somente se, a álgebra &#922\\&#916 é simplesmente conexa. Na área homológica, determinamos um limitante superior da dimensão global forte das Phias; mais ainda, ampliamos esse resultado para as álgebras sinceras provando que dada uma álgebra sincera e hereditária por partes, sua dimensão global forte é menor ou igual a três. / We present a study of incidence algebras that are piecewise hereditary, which we denominate Phias. By means of the quiver with relations, we describe Phias of Dynkin type and introduce a new family of Phias of extended Dynkin type, which we call ANS family, in reference to Assem, Nehring, and Skowronski. In this description, the important method was the one of cuts on trivial extensions, inspiring the writing of a program that shows exactly the cuts on the given trivial extension that result on incidence algebras. We approach sheaves type Phias &#922\\&#916, studying the canonical sincere &#922\\&#916-module M and the one-point extension algebra &#922\\&#916[&#924]. We show that if &#922Q/I is a sincere, quasi-tilted canonical algebra of quiver type and infinite representation type, then sincere &#922Q/I-modules are exceptional. This conclusion allows the construction of a wide range of Phias &#922\\&#916[&#924] wild type. We explore the simply conectedeness of Phias, proving a positive answer of the so called Skowronski problem for &#922\\&#916 a Phia H type, with connected quiver of tilting objects &#922_D^b (&#919): the group &#919^1(&#922\\&#916) is trivial if, and only if, &#922\\&#916 is a simply connected algebra. On homology, we determine an upper bound for the strong global dimension of Phias; furthermore, we extend this result for sincere algebras proving that the strong global dimension of a sincere piecewise hereditary algebra is less or equal to three.

Page generated in 0.058 seconds