• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações / Approach based on information visualization techniques for evaluation of image features and applications

Cruz, Laura Elizabeth Florian 24 September 2012 (has links)
Na maioria dos processos de análise de imagens há a necessidade de um pré-processamento, no qual são extraídos e calculados vetores de características que representem as imagens são utilizados no cálculo de similaridade. Uma dificuldade nessas tarefas é o grande número de características que definem um espaço de alta dimensionalidade, afetando fortemente o desempenho das tarefas que seguem, que podem envolver uma análise visual, um agrupamento ou uma classificação de dados, por exemplo. Lidar com esse problema normalmente exige técnicas de redução de dimensionalidade ou seleção de características. O presente trabalho dá sequência a trabalhos que utilizam técnicas de visualização como suporte para avaliar espaços de características gerados a partir de coleções de imagens. Nele, objetiva-se aprimorar um método baseado na análise visual de conjuntos de imagens empregando a árvore de similaridade Neighbor-Joining que apoia o usuário a selecionar um subespaço de características que mantenha ou melhore os resultados das visualizações do conjunto de imagens. A partir da metodologia proposta, a avaliação e a seleção de características representativas é realizada usando a visualização NJ. A maior parte dos experimentos responde positivamente para diferentes conjuntos de imagens representados por vários extratores, obtendo-se processos de seleção personalizados mais precisos e eficazes, em termos de agrupamento, do que abordagens automáticas reportadas na literatura / In the majority of the image analysis processes there is need for a pre-processing step, in which feature vectors representative of the images are extracted and similarity methods are calculates. A difficult step in the process is to choose amongst the large number of features available, that will define a feature space of high dimensionality, impacting the cost of the subsequent processing tasks, such as visual analysis, clustering and classification. This problem is usually handled by dimension reduction of feature selection techniques. This work extends and improves previous work that employs visualization and visual analysis techniques to support evaluation of feature spaces created from image collections. The goal is to improve a previous method of feature selection through visualization to employ similarity trees via the Neighbor Joining (NJ) algorithm as the basis for the visual layout, as well as to improve the choices of the analyst regarding tools for visual selection of features. The same process can be employed to support evaluation of feature spaces using the NJ visualization. The majorities of experiments results in improvement of spaces generated by various extractors, yielding personalized selection process that are more precisely related to user\'s perspective of the data set and are perform similarly or better than automatic approaches available in the literature. Keywords: information visualization, mining, visual images, visual analysis of the feature space, similarity trees
2

Uma abordagem baseada em técnicas de visualização de informações para avaliação de características de imagens e aplicações / Approach based on information visualization techniques for evaluation of image features and applications

Laura Elizabeth Florian Cruz 24 September 2012 (has links)
Na maioria dos processos de análise de imagens há a necessidade de um pré-processamento, no qual são extraídos e calculados vetores de características que representem as imagens são utilizados no cálculo de similaridade. Uma dificuldade nessas tarefas é o grande número de características que definem um espaço de alta dimensionalidade, afetando fortemente o desempenho das tarefas que seguem, que podem envolver uma análise visual, um agrupamento ou uma classificação de dados, por exemplo. Lidar com esse problema normalmente exige técnicas de redução de dimensionalidade ou seleção de características. O presente trabalho dá sequência a trabalhos que utilizam técnicas de visualização como suporte para avaliar espaços de características gerados a partir de coleções de imagens. Nele, objetiva-se aprimorar um método baseado na análise visual de conjuntos de imagens empregando a árvore de similaridade Neighbor-Joining que apoia o usuário a selecionar um subespaço de características que mantenha ou melhore os resultados das visualizações do conjunto de imagens. A partir da metodologia proposta, a avaliação e a seleção de características representativas é realizada usando a visualização NJ. A maior parte dos experimentos responde positivamente para diferentes conjuntos de imagens representados por vários extratores, obtendo-se processos de seleção personalizados mais precisos e eficazes, em termos de agrupamento, do que abordagens automáticas reportadas na literatura / In the majority of the image analysis processes there is need for a pre-processing step, in which feature vectors representative of the images are extracted and similarity methods are calculates. A difficult step in the process is to choose amongst the large number of features available, that will define a feature space of high dimensionality, impacting the cost of the subsequent processing tasks, such as visual analysis, clustering and classification. This problem is usually handled by dimension reduction of feature selection techniques. This work extends and improves previous work that employs visualization and visual analysis techniques to support evaluation of feature spaces created from image collections. The goal is to improve a previous method of feature selection through visualization to employ similarity trees via the Neighbor Joining (NJ) algorithm as the basis for the visual layout, as well as to improve the choices of the analyst regarding tools for visual selection of features. The same process can be employed to support evaluation of feature spaces using the NJ visualization. The majorities of experiments results in improvement of spaces generated by various extractors, yielding personalized selection process that are more precisely related to user\'s perspective of the data set and are perform similarly or better than automatic approaches available in the literature. Keywords: information visualization, mining, visual images, visual analysis of the feature space, similarity trees

Page generated in 0.1036 seconds