Spelling suggestions: "subject:"atomos dde sócio"" "subject:"atomos dde audio""
1 |
Aprisionamento magnético de um gás neutro de átomos de sódio para a realização da condensação de bose-einstein / Magnetic trapping of a neutral sodium atomic gas for Bose-Einstein CondensationMosman Junior, Edson de Oliveira 25 April 2000 (has links)
Para atingir o regime de condensação de Bose-Einstein (CBE) em gases de metais alcalinos são necessárias várias etapas: feixe desacelerado, aprisionamento magneto-óptico, aprisionamento magnético e por fim o resfriamento evaporativo. Como estamos interessados em atingir o regime de CBE precisamos nos preocupar com as várias etapas intermediárias. Neste trabalho apresentaremos a construção e caracterização de uma armadilha magnética para um gás de átomos neutros de sódio. O sistema optado por nós foi o \"folha de trevo\", com o qual conseguimos a seguinte configuração de campos magnéticos: 140 gauss de campo de fundo na direção axial, 117 gauss/cm de gradiente radial e 106 gauss/cm 2 de curvatura na direção axial. Para gerarmos esta configuração de campo e desligarmos estes campos em um tempo menor que um milisegundo foi necessária a construção de um sistema de chaveamento e controle que será descrito e caracterizado neste trabalho. Com este sistema em funcionamento observamos aproximadamente 10 8 átomos aprisionados e um tempo de 1 segundo. Além disso, observamos os átomos adaptando-se a diferentes formas de potenciais de aprisionamento / In order to obtain Bose- Einstein condensation ( BEC ) in alkali gases several steps are needed : slowing beam , magneto- optical trapping , trapping magnetic and finally evaporative cooling . Since, we are interested in achieving BEC regime we need to consider about the various intermediate steps . In this work, we present the construction and characterization of a magnetic trap for a gas neutral atom of sodium. The system we chose was the \" clover leaf \" , with which we got the following configuration of magnetic fields : 140 gauss field background in the axial direction , 117 gauss / cm radial gradient and 106 gauss / cm 2 of curvature axial direction . For generating this field configuration and disconnecting these fields in a time of less than one millisecond required the construction of a switching system and control that will be described and characterized in this work. With this system, noted in about 10 8 trapped atoms and a time of 1 second. Besides, we observe the atoms adapting to different forms of potential imprisonment
|
2 |
Aprisionamento magnético de um gás neutro de átomos de sódio para a realização da condensação de bose-einstein / Magnetic trapping of a neutral sodium atomic gas for Bose-Einstein CondensationEdson de Oliveira Mosman Junior 25 April 2000 (has links)
Para atingir o regime de condensação de Bose-Einstein (CBE) em gases de metais alcalinos são necessárias várias etapas: feixe desacelerado, aprisionamento magneto-óptico, aprisionamento magnético e por fim o resfriamento evaporativo. Como estamos interessados em atingir o regime de CBE precisamos nos preocupar com as várias etapas intermediárias. Neste trabalho apresentaremos a construção e caracterização de uma armadilha magnética para um gás de átomos neutros de sódio. O sistema optado por nós foi o \"folha de trevo\", com o qual conseguimos a seguinte configuração de campos magnéticos: 140 gauss de campo de fundo na direção axial, 117 gauss/cm de gradiente radial e 106 gauss/cm 2 de curvatura na direção axial. Para gerarmos esta configuração de campo e desligarmos estes campos em um tempo menor que um milisegundo foi necessária a construção de um sistema de chaveamento e controle que será descrito e caracterizado neste trabalho. Com este sistema em funcionamento observamos aproximadamente 10 8 átomos aprisionados e um tempo de 1 segundo. Além disso, observamos os átomos adaptando-se a diferentes formas de potenciais de aprisionamento / In order to obtain Bose- Einstein condensation ( BEC ) in alkali gases several steps are needed : slowing beam , magneto- optical trapping , trapping magnetic and finally evaporative cooling . Since, we are interested in achieving BEC regime we need to consider about the various intermediate steps . In this work, we present the construction and characterization of a magnetic trap for a gas neutral atom of sodium. The system we chose was the \" clover leaf \" , with which we got the following configuration of magnetic fields : 140 gauss field background in the axial direction , 117 gauss / cm radial gradient and 106 gauss / cm 2 of curvature axial direction . For generating this field configuration and disconnecting these fields in a time of less than one millisecond required the construction of a switching system and control that will be described and characterized in this work. With this system, noted in about 10 8 trapped atoms and a time of 1 second. Besides, we observe the atoms adapting to different forms of potential imprisonment
|
3 |
Desaceleração e manipulação de átomos neutros / Decelerating and manipulating neutral atomsLeite, Carlos Alberto Faria 21 August 1992 (has links)
O trabalho trata da desaceleração de feixes de átomos neutros de Sódio, pela técnica de sintonia Zeeman. O processo de desaceleração é estudado em detalhes e demonstrado com a utilização de um único laser. É feito o estudo do seguimento adiabático do átomo em relação ao campo magnético e demonstrada sua importância no processo de produção de fluxos intensos de átomos lentos. A posição em que os átomos param foi modificada, através da mudança do perfil do campo magnético onde os átomos se movimentam, levando-os para uma região de fácil acesso. A forma peculiar da distribuição espacial dos átomos ao atingirem o repouso é explicada e, finalmente, é estudada a focalização dos átomos, através de um campo magnético hexapolar, e o aprisionamento de átomos em uma armadilha magnética / This work describes the deceleration a sodium atoms beam by means of the Zeeman tuning technique. The deceleration process is studied in details and its demonstration is made using a single laser. We have studied and present the adiabatic following of the atoms along the magnetic field and its relevance to produce slow, high density, flux of neutral atoms. The atoms\' stopping position was varied, by changing the magnetic field profile, in a way to produce slows atoms outside the solenoid. The peculiar shape of the atomic spatial distribution of atoms at rest is explained, the focusing of atoms though a hexapole magnetic field is studied and the trapping of atoms in a magnetic trap is demonstrated
|
4 |
Desaceleração e manipulação de átomos neutros / Decelerating and manipulating neutral atomsCarlos Alberto Faria Leite 21 August 1992 (has links)
O trabalho trata da desaceleração de feixes de átomos neutros de Sódio, pela técnica de sintonia Zeeman. O processo de desaceleração é estudado em detalhes e demonstrado com a utilização de um único laser. É feito o estudo do seguimento adiabático do átomo em relação ao campo magnético e demonstrada sua importância no processo de produção de fluxos intensos de átomos lentos. A posição em que os átomos param foi modificada, através da mudança do perfil do campo magnético onde os átomos se movimentam, levando-os para uma região de fácil acesso. A forma peculiar da distribuição espacial dos átomos ao atingirem o repouso é explicada e, finalmente, é estudada a focalização dos átomos, através de um campo magnético hexapolar, e o aprisionamento de átomos em uma armadilha magnética / This work describes the deceleration a sodium atoms beam by means of the Zeeman tuning technique. The deceleration process is studied in details and its demonstration is made using a single laser. We have studied and present the adiabatic following of the atoms along the magnetic field and its relevance to produce slow, high density, flux of neutral atoms. The atoms\' stopping position was varied, by changing the magnetic field profile, in a way to produce slows atoms outside the solenoid. The peculiar shape of the atomic spatial distribution of atoms at rest is explained, the focusing of atoms though a hexapole magnetic field is studied and the trapping of atoms in a magnetic trap is demonstrated
|
5 |
Possibilidades de produção de feixes atômicos monoenergéticos / Prospects for producing monoenergetic atomic beamsColussi, Valdir Carlos 07 July 1992 (has links)
Neste trabalho, apresentamos um estudo detalhado da técnica de desaceleração e aceleração de átomos pelo ajuste Zeeman, possibilitando a produção de um feixe atômico monoenergético. Usando esta técnica, realizamos estudos sobre efeito de bombeameto óptico e condições de seguimento adiabático dos átomos no campo magnético. Através do entendimento destes efeitos, pudemos propor modificações que permitirão a produção de um fluxo intenso de átomos monoenergéticos, que deverão permitir experimentos, com este tipo de feixe atômico, fora do sistema / We have carefully studied the Zeeman-tuned technique to decelerate and also accelerate sodium atoms atomic beam, creating ways of producing monoenergetic atomic beams. A systematic study of the optical pumping effects on these beams, as well as its adiabatic following conditions along the magnetic field were also investigated. A single laser beam, together with minor changes on the the magnetic field profile and on the optical setup, was used to decelerate and/or to accelerate atoms running outside of the Zeeman solenoid, simplifying and speeding up the experimental runs
|
6 |
Possibilidades de produção de feixes atômicos monoenergéticos / Prospects for producing monoenergetic atomic beamsValdir Carlos Colussi 07 July 1992 (has links)
Neste trabalho, apresentamos um estudo detalhado da técnica de desaceleração e aceleração de átomos pelo ajuste Zeeman, possibilitando a produção de um feixe atômico monoenergético. Usando esta técnica, realizamos estudos sobre efeito de bombeameto óptico e condições de seguimento adiabático dos átomos no campo magnético. Através do entendimento destes efeitos, pudemos propor modificações que permitirão a produção de um fluxo intenso de átomos monoenergéticos, que deverão permitir experimentos, com este tipo de feixe atômico, fora do sistema / We have carefully studied the Zeeman-tuned technique to decelerate and also accelerate sodium atoms atomic beam, creating ways of producing monoenergetic atomic beams. A systematic study of the optical pumping effects on these beams, as well as its adiabatic following conditions along the magnetic field were also investigated. A single laser beam, together with minor changes on the the magnetic field profile and on the optical setup, was used to decelerate and/or to accelerate atoms running outside of the Zeeman solenoid, simplifying and speeding up the experimental runs
|
7 |
Production of a Bose-Einstein condensate of sodium atoms and investigation considering non-linear atom-photon interactions / Producção de um Condensado de Bose-Einstein de átomos de sódio e investigação considerando interações não lineares entre átomos e fótonsPeñafiel, Edwin Eduardo Pedrozo 22 August 2016 (has links)
In this work we constructed an experimental system to realize a BEC of sodium atoms. In the first part of the work, we study two atomic sources in order to choose the most suitable for our system. The comparison between a Zeeman slower and a bidimensional magnetooptical trap (2D-MOT) was performed to evaluate the capacity of producing an appropiate flux of atoms in order to load a tridimensional magneto-optical trap (3D-MOT). The experimental results show that the 2D-MOT is as efficient as the Zeeman slower with the advantage of being more compact and easier to operate, and for these reasons we choose it as our source of cold atoms. After this, the experimental apparatus to produce a Bose-Einstein condensate was constructed and characterized. With this experimental system we realized all the required stages to achieve the Bose-Einstein condensation (BEC). Initially, we characterized and compared the performance between the Bright-MOT and Dark-SPOT MOT of sodium atoms, observing the great advantages this last configuration offers. Afterward, we implemented the experimental sequence for the achivement of the BEC of sodium atoms. After the optical molasses process, the atoms are tranferred to an optically plugged quadrupole trap (OPT) where the process of evaporative cooling is performed. With this setup, we achive a sodium BEC with ∼ 5×105 atoms and a critical temperature of ∼ 1.1 μK. Finally, with the constructed and characterized machine, we started to perform experiments of cooperative absorption of two photons by two trapped atoms. With the new system, we wanted to take advantage of the higher densities in the magnetic trap and BEC to explore some features of this phenomenon in the classical and quantum regimes. We were interested in exploring some features of this nonlinear light-matter interaction effect. The idea of having two or more photons interacting with two or more atoms is the beginning of a new possible class of phenomena that we could call many photons-many body intercation. In this new possibity, photons and atoms will be fully correlated, introducing new aspects of interactions. / Neste trabalho, realizamos a construção de um sistema experimental para a realização de um condensado de Bose-Einstein de átomos de sódio. Na primeira parte do trabalho, realizamos o estudo de duas fontes átomicas com o intuito de escolher a mais adequada para nosso sistema experimental. A comparação foi realizada entre um Zeeman slower e uma armadilha magneto-óptica bidimensional (MOT-2D), que são técnicas usadas para fornecer um grande fluxo de átomos com distribuição de velocidades adequadas para serem capturados numa armadilha magneto-óptica tridimensional (MOT-3D). Os resultados experimentais da caracterização de ambos os sistemas mostra que o MOT-2D oferece um grande fluxo atômico da mesma ordem do Zeeman slower, mas com a vantagem de ser um sistema mais compacto em questão de tamanho, razão pela qual foi escolhido como fonte atômica no nosso sistema. A partir daqui, realizamos a construção do sistema experimental para a realização do condensado de sódio. Inicialmente realizamos o aprisionamento numa MOT-3D, realizando subsequentemente os passos de resfriamento sub-Doppler mediante o processo de molasses ópticas. Depois disto, os átomos são transferidos para uma armadilha magnética, que consiste de um par de bobinas em configuração anti-Helmholtz, as mesmas usadas para a MOT-3D mas com um gradiente de campo magnético ao redor de uma ordem de grandeza maior. Esta armadilha é combinada com um laser com dessintonia para o azul focado a 30 μm no centro da armadilha, onde o campo magnético é zero com o objetivo de evitar as perdas por majorana que acontecem nessa região. Com esta configuração, um condensado de ∼ 5 × 105 átomos é obtido a uma temperatura crítica de ∼ 1.1 μK. Por último, com a máquina construída e caracterizada, começamos re-explorar o experimento de absorção cooperativa de dois fótons por dois átomos aprisionados. Com nosso novo sistema, é possível explorar este efeito no regime clássico e quântico. Estamos interessados em explorar algumas características da interação não linear entre luz e matéria. A ideia de ter dois ou mais fótons interagindo com um ou mais átomos, é possivelmente o começo de uma nova classe de fenômenos que poderíamos chamar de interação de muitos fótons com muitos átomos.
|
8 |
Production of a Bose-Einstein condensate of sodium atoms and investigation considering non-linear atom-photon interactions / Producção de um Condensado de Bose-Einstein de átomos de sódio e investigação considerando interações não lineares entre átomos e fótonsEdwin Eduardo Pedrozo Peñafiel 22 August 2016 (has links)
In this work we constructed an experimental system to realize a BEC of sodium atoms. In the first part of the work, we study two atomic sources in order to choose the most suitable for our system. The comparison between a Zeeman slower and a bidimensional magnetooptical trap (2D-MOT) was performed to evaluate the capacity of producing an appropiate flux of atoms in order to load a tridimensional magneto-optical trap (3D-MOT). The experimental results show that the 2D-MOT is as efficient as the Zeeman slower with the advantage of being more compact and easier to operate, and for these reasons we choose it as our source of cold atoms. After this, the experimental apparatus to produce a Bose-Einstein condensate was constructed and characterized. With this experimental system we realized all the required stages to achieve the Bose-Einstein condensation (BEC). Initially, we characterized and compared the performance between the Bright-MOT and Dark-SPOT MOT of sodium atoms, observing the great advantages this last configuration offers. Afterward, we implemented the experimental sequence for the achivement of the BEC of sodium atoms. After the optical molasses process, the atoms are tranferred to an optically plugged quadrupole trap (OPT) where the process of evaporative cooling is performed. With this setup, we achive a sodium BEC with ∼ 5×105 atoms and a critical temperature of ∼ 1.1 μK. Finally, with the constructed and characterized machine, we started to perform experiments of cooperative absorption of two photons by two trapped atoms. With the new system, we wanted to take advantage of the higher densities in the magnetic trap and BEC to explore some features of this phenomenon in the classical and quantum regimes. We were interested in exploring some features of this nonlinear light-matter interaction effect. The idea of having two or more photons interacting with two or more atoms is the beginning of a new possible class of phenomena that we could call many photons-many body intercation. In this new possibity, photons and atoms will be fully correlated, introducing new aspects of interactions. / Neste trabalho, realizamos a construção de um sistema experimental para a realização de um condensado de Bose-Einstein de átomos de sódio. Na primeira parte do trabalho, realizamos o estudo de duas fontes átomicas com o intuito de escolher a mais adequada para nosso sistema experimental. A comparação foi realizada entre um Zeeman slower e uma armadilha magneto-óptica bidimensional (MOT-2D), que são técnicas usadas para fornecer um grande fluxo de átomos com distribuição de velocidades adequadas para serem capturados numa armadilha magneto-óptica tridimensional (MOT-3D). Os resultados experimentais da caracterização de ambos os sistemas mostra que o MOT-2D oferece um grande fluxo atômico da mesma ordem do Zeeman slower, mas com a vantagem de ser um sistema mais compacto em questão de tamanho, razão pela qual foi escolhido como fonte atômica no nosso sistema. A partir daqui, realizamos a construção do sistema experimental para a realização do condensado de sódio. Inicialmente realizamos o aprisionamento numa MOT-3D, realizando subsequentemente os passos de resfriamento sub-Doppler mediante o processo de molasses ópticas. Depois disto, os átomos são transferidos para uma armadilha magnética, que consiste de um par de bobinas em configuração anti-Helmholtz, as mesmas usadas para a MOT-3D mas com um gradiente de campo magnético ao redor de uma ordem de grandeza maior. Esta armadilha é combinada com um laser com dessintonia para o azul focado a 30 μm no centro da armadilha, onde o campo magnético é zero com o objetivo de evitar as perdas por majorana que acontecem nessa região. Com esta configuração, um condensado de ∼ 5 × 105 átomos é obtido a uma temperatura crítica de ∼ 1.1 μK. Por último, com a máquina construída e caracterizada, começamos re-explorar o experimento de absorção cooperativa de dois fótons por dois átomos aprisionados. Com nosso novo sistema, é possível explorar este efeito no regime clássico e quântico. Estamos interessados em explorar algumas características da interação não linear entre luz e matéria. A ideia de ter dois ou mais fótons interagindo com um ou mais átomos, é possivelmente o começo de uma nova classe de fenômenos que poderíamos chamar de interação de muitos fótons com muitos átomos.
|
9 |
Construção de um sistema experimental para desaceleração de átomos. / Construction of an experimental system for stopping atoms.Firmino, Marcel Eduardo 21 March 1991 (has links)
Neste trabalho apresentamos a construção e teste de um sistema experimental que nos permite produzir um fluxo intenso de átomos lentos. Discutimos o desenho e construção do solenóide que compensa o efeito Doppler que surge durante o processo de desaceleração, as câmaras de vácuo, o forno que gera o feixe atômico e o sistema ótico utilizado. Estudamos a técnica de desaceleração de átomos pelo ajuste Zeeman. Uma nova técnica de observação que consiste no acompanhamento da fluorescência do feixe ao longo do caminho de desaceleração é usada, o que nos permite uma observação direta do processo. / This work presents the development and test of an experimental set-up which allows to produce a very strong slow motion atomic beam. We discuss the calculation and construction of the solenoid to compensate the Doppler effect arising during the deceleration process, vacuum chambers, the oven which produces the atomic beam and the optical system used. We have studied the Zeeman-tuned technique to slow an atomic beam of sodium atoms. A new technique to study the deceleration which Consist in monitoring the fluorescence along the deceleration path is used, which allow us a direct observation of the process.
|
10 |
Construção de um sistema experimental para desaceleração de átomos. / Construction of an experimental system for stopping atoms.Marcel Eduardo Firmino 21 March 1991 (has links)
Neste trabalho apresentamos a construção e teste de um sistema experimental que nos permite produzir um fluxo intenso de átomos lentos. Discutimos o desenho e construção do solenóide que compensa o efeito Doppler que surge durante o processo de desaceleração, as câmaras de vácuo, o forno que gera o feixe atômico e o sistema ótico utilizado. Estudamos a técnica de desaceleração de átomos pelo ajuste Zeeman. Uma nova técnica de observação que consiste no acompanhamento da fluorescência do feixe ao longo do caminho de desaceleração é usada, o que nos permite uma observação direta do processo. / This work presents the development and test of an experimental set-up which allows to produce a very strong slow motion atomic beam. We discuss the calculation and construction of the solenoid to compensate the Doppler effect arising during the deceleration process, vacuum chambers, the oven which produces the atomic beam and the optical system used. We have studied the Zeeman-tuned technique to slow an atomic beam of sodium atoms. A new technique to study the deceleration which Consist in monitoring the fluorescence along the deceleration path is used, which allow us a direct observation of the process.
|
Page generated in 0.0648 seconds