• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Técnicas de resfriamento e aprisionamento de átomos aplicadas a átomos de estrôncio / Techniques for cooling and trapping of atoms applied to strontium atoms

Miguez, Maria Luiza 20 September 2013 (has links)
Este trabalho descreve os métodos usados para obtenção de uma amostra ultra-fria de átomos de estrôncio. Os métodos usados para preparar a amostra são: um desacelerador Zeeman e duas armadilhas magneto-ópticas (MOT). O primeiro MOT operando na transição 1S0−1 P1 (azul) e o segundo na transição 1S0−3P1 (vermelha). Com relação ao primeiro estágio, se faz necessário o uso de um laser de comprimento de onda de 497nm, que através da transição 3P2−3D2 recuperam os átomos que sofrem transição para os chamados estados escuros. O último estágio é uma armadilha de dipolo para átomos de estrôncio usando apenas um feixe laser com comprimento de onda de 1064nm. O carregamento dessa armadilha é feito transferindo uma amostra atômica já pré-resfriadas. Explicamos de que maneira é feita a análise e aquisição dos resultados apresentados. Ressaltamos ainda a importância dos resultados obtidos para o projeto atual e para projetos futuros. / The present work describes the methods used to obtain a sample of ultra cold atoms of strontium. The methods necessary for obtaining the sample are: a Zeeman decelerator and a two step magneto-optical trap (MOTs). The first MOT works on the blue transition 1S0−1P1 while the second is operating on the red transition 1S0−3P1 transition. In the first stage a laser operating at 497nm is used to drive the 3P2−3D2 transition in order to prevent atoms accumulating in the 3P1 dark state. The last stage, after cooling, consists in a dipole trap for strontium atoms using only one laser beam with 1064nm wavelength. This trap is loaded by the transfer of a pre cooled atomic sample. We explain how the analysis and acquisition of the presented data are made. We also emphasize the importance of the obtained results for the current project as well as for future ones.
2

Dinâmica de um condensado de Bose-Eintein contendo sólitons / Bose-Einstein condensate dynamics with solitons

Smaira, André de Freitas 05 February 2015 (has links)
Condensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria. / Bose-Einstein Condensates (BEC) are excellent macroscopic systems to observe the quantum behavior of matter. Since it experimental production in dilute atomic alkali gases trapped by magnetic fields, there are important aspects related to this system that have been intensely explored, like the collective modes of the harmonically trapped BEC, its tunneling through a potential barrier and the excited states of this system, that include the vortex and soliton. The latter consist of localized disturbances, which propagate without change of form. In this work, we investigate the singular aspects that coming from the dynamics of a composite system (trapped BEC containing a soliton). There are many studies that treat each part separately, that include a fundamental state BEC or a soliton inside a uniform infinite extent stationary BEC. We are basing on these previous analyses, besides mean-field numeric simulating our particular system submitted to diferent initial conditions (minimum harmonic potential trapped BEC or dislocated trapped BEC plus a soliton, in addition to a deformation in the potential) to characterize the tunneling dynamics. Some of our results could be explained using analytical predictions of the so called Thomas-Fermi approximation. At the end, we compar the meanfield simulations (Gross-Pitavskii equation) with the simulations from the multiple orbitals theory to justify the validity regime of our theory.
3

Dinâmica de um condensado de Bose-Eintein contendo sólitons / Bose-Einstein condensate dynamics with solitons

André de Freitas Smaira 05 February 2015 (has links)
Condensados de Bose-Einstein (BEC) são sistemas macroscópicos excelentes para a observação do comportamento quântico da matéria. Desde sua obtenção experimental em gases atômicos alcalinos diluídos aprisionados por campos magnéticos, há importantes aspectos relacionados a esse sistema que foram intensamente explorados, como os modos coletivos do BEC harmonicamente aprisionado, seu tunelamento através de barreiras de potencial e os estados excitados desse sistema, incluindo vórtice e sóliton. O último consiste de pacote de onda localizado, que propaga sem mudança de forma. Nesse trabalho, investigamos os novos aspectos que surgem da dinâmica de um sistema composto (condensado aprisionado contendo um sóliton). Há muitos estudos tratando cada parte separadamente: estado fundamental do BEC ou um sóliton em um BEC infinito uniforme estacionário. Estamos nos baseando nessas análises prévias, além da simulação numérica de campo médio do nosso sistema submetido a diferentes condições iniciais (BEC aprisionado no mínimo do potencial harmônico ou BEC deslocado na armadilha contendo um sóliton, além de uma deformação no potencial) para caracterizar a dinâmica desse sistema. Alguns dos nossos resultados puderam ser explicados por meio de predições analítica da chamada aproximação de Thomas-Fermi. Ao final, comparamos as simulações de campo médio (equação de Gross-Pitaevskii) com as advindas da teoria de múltiplos orbitais a fim de justificar o regime de validade da nossa teoria. / Bose-Einstein Condensates (BEC) are excellent macroscopic systems to observe the quantum behavior of matter. Since it experimental production in dilute atomic alkali gases trapped by magnetic fields, there are important aspects related to this system that have been intensely explored, like the collective modes of the harmonically trapped BEC, its tunneling through a potential barrier and the excited states of this system, that include the vortex and soliton. The latter consist of localized disturbances, which propagate without change of form. In this work, we investigate the singular aspects that coming from the dynamics of a composite system (trapped BEC containing a soliton). There are many studies that treat each part separately, that include a fundamental state BEC or a soliton inside a uniform infinite extent stationary BEC. We are basing on these previous analyses, besides mean-field numeric simulating our particular system submitted to diferent initial conditions (minimum harmonic potential trapped BEC or dislocated trapped BEC plus a soliton, in addition to a deformation in the potential) to characterize the tunneling dynamics. Some of our results could be explained using analytical predictions of the so called Thomas-Fermi approximation. At the end, we compar the meanfield simulations (Gross-Pitavskii equation) with the simulations from the multiple orbitals theory to justify the validity regime of our theory.
4

Técnicas de resfriamento e aprisionamento de átomos aplicadas a átomos de estrôncio / Techniques for cooling and trapping of atoms applied to strontium atoms

Maria Luiza Miguez 20 September 2013 (has links)
Este trabalho descreve os métodos usados para obtenção de uma amostra ultra-fria de átomos de estrôncio. Os métodos usados para preparar a amostra são: um desacelerador Zeeman e duas armadilhas magneto-ópticas (MOT). O primeiro MOT operando na transição 1S0−1 P1 (azul) e o segundo na transição 1S0−3P1 (vermelha). Com relação ao primeiro estágio, se faz necessário o uso de um laser de comprimento de onda de 497nm, que através da transição 3P2−3D2 recuperam os átomos que sofrem transição para os chamados estados escuros. O último estágio é uma armadilha de dipolo para átomos de estrôncio usando apenas um feixe laser com comprimento de onda de 1064nm. O carregamento dessa armadilha é feito transferindo uma amostra atômica já pré-resfriadas. Explicamos de que maneira é feita a análise e aquisição dos resultados apresentados. Ressaltamos ainda a importância dos resultados obtidos para o projeto atual e para projetos futuros. / The present work describes the methods used to obtain a sample of ultra cold atoms of strontium. The methods necessary for obtaining the sample are: a Zeeman decelerator and a two step magneto-optical trap (MOTs). The first MOT works on the blue transition 1S0−1P1 while the second is operating on the red transition 1S0−3P1 transition. In the first stage a laser operating at 497nm is used to drive the 3P2−3D2 transition in order to prevent atoms accumulating in the 3P1 dark state. The last stage, after cooling, consists in a dipole trap for strontium atoms using only one laser beam with 1064nm wavelength. This trap is loaded by the transfer of a pre cooled atomic sample. We explain how the analysis and acquisition of the presented data are made. We also emphasize the importance of the obtained results for the current project as well as for future ones.
5

Construção de uma armadilha de dipolo tipo QUEST para átomos de Rydberg / Construction of a QUEST dipole trap for Rydberg atoms

Gonçalves, Luis Felipe Barbosa Faria 28 March 2012 (has links)
Neste trabalho, descrevemos a construção de uma armadilha óptica de dipolo, tipo Quest, para átomos de Rydberg utilizando um laser de CO2 de alta potência. A amostra aprisionada apresenta aproximadamente 3 × 106 átomos de 85Rb numa densidade 4 × 1011 átomos/cm3, em temperaturas da ordem 30 µK. O tempo de vida da armadilha é da ordem de 200 ms. Neste sistema, observamos a fotoionização dos estados de Rydberg devido ao laser de CO2 em 10, 6 µm, contudo fomos incapazes de quantificá-lo. Além disso, medimos o tempo de vida do estado 37D do Rb na armadilha de dipolo, o resultado foi compatível ao encontrado na literatura. Em suma, o sistema esta operante para experimentos mais complexos. / In this work, we describe the implementation of a QUEST dipole trap for Rydberg atoms using a CO2 high power laser. The trapped atomic sample has approximately 3 × 106 85Rb atoms, at a density of 4 × 1011 atoms/cm3 and a temperature of about 30 µK. The trap lifetime is about 200 ms. We observed photoionization of the Rydberg states due to the CO2 laser at 10, 6 µK, however we were unable to quantify it. Furthermore, we measured the 37D state lifetime of the Rb in the dipole trap, the experimental result was in agreement with the literature. In summary, the system is fully operating for more complex experiments.
6

Construção de uma armadilha de dipolo tipo QUEST para átomos de Rydberg / Construction of a QUEST dipole trap for Rydberg atoms

Luis Felipe Barbosa Faria Gonçalves 28 March 2012 (has links)
Neste trabalho, descrevemos a construção de uma armadilha óptica de dipolo, tipo Quest, para átomos de Rydberg utilizando um laser de CO2 de alta potência. A amostra aprisionada apresenta aproximadamente 3 × 106 átomos de 85Rb numa densidade 4 × 1011 átomos/cm3, em temperaturas da ordem 30 µK. O tempo de vida da armadilha é da ordem de 200 ms. Neste sistema, observamos a fotoionização dos estados de Rydberg devido ao laser de CO2 em 10, 6 µm, contudo fomos incapazes de quantificá-lo. Além disso, medimos o tempo de vida do estado 37D do Rb na armadilha de dipolo, o resultado foi compatível ao encontrado na literatura. Em suma, o sistema esta operante para experimentos mais complexos. / In this work, we describe the implementation of a QUEST dipole trap for Rydberg atoms using a CO2 high power laser. The trapped atomic sample has approximately 3 × 106 85Rb atoms, at a density of 4 × 1011 atoms/cm3 and a temperature of about 30 µK. The trap lifetime is about 200 ms. We observed photoionization of the Rydberg states due to the CO2 laser at 10, 6 µK, however we were unable to quantify it. Furthermore, we measured the 37D state lifetime of the Rb in the dipole trap, the experimental result was in agreement with the literature. In summary, the system is fully operating for more complex experiments.

Page generated in 0.0383 seconds