• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organization of intracellular reactions with rationally designed scaffolding systems / Organisation des réactions intracellulaires avec les systèmes d'échafaudage rationnellement conçus

Delebecque, Camille 15 November 2012 (has links)
Au sein des cellules, les voies enzymatiques sont souvent organisées spatialement sous forme de complexes, sur des structures protéiques ou dans des micro-compartiments. Cette organisation spatiale aide au déroulement optimal des réactions enzymatiques en limitant les pertes d’intermédiaires métaboliques, en isolant les voies de signalisations et en augmentant le rendement des réactions enzymatiques. Dans ce travail de thèse nous avons étudié la possibilité de créer des outils permettant de contrôler et optimiser de novo l’organisation spatiale de voies métaboliques in vivo.Nous avons dessiné et assemblé des structures d’ARN non codants utilisées comme support pour organiser le métabolisme bactérien. Ces ARN s’assemblent spontanément in vivo en des structures à une ou deux dimensions avec des sites distincts d’attachement protéique. Nous démontrons l’utilité de cette approche via l’optimisation d’une voie enzymatique de synthèse de biohydrogène et démocratisons l’utilisation de ces structures d’ARN en développant un protocole simplifié. Nous étendons cette étude à d’autres stratégies d’organisation, notamment via l’ingénierie des cellules spécialisées dans la fixation de l’azote atmosphérique de la cyanobactérie Anabaena PCC7120, les hétérocystes. Ce travail de thèse ouvre de nouvelles portes à la biologie de synthèse à la biologie structurale et aux nanotechnologies / In cells bio-enzymatic pathways are often spatially organized into complexes, into organelles or onto protein scaffolds. Spatial organization limits diffusion and helps channels substrates between enzymatic cores, limiting competing reactions, insulating and increasing yields of sequential metabolic reactions. In this PhD thesis work, we engineered new tools to control the precise spatial organization of enzymes and increase the titer of specific pathways. We design and engineer “artificial organelles” made of assembling RNA nanostructures. These scaffolds are made out of assembling non-coding RNA molecules we specifically design to polymerize into multi-dimensional nanostructures inside bacterial cells. These structures have docking sites to target enzymes onto them and control their respective distance and stochiometry. We demonstrate the validity of our approach by optimizing and improving the production of biohydrogen and designing a protocol to simplify and standardize the use of RNA scaffold. Moreover, we develop a new synthetic biology “chassis” by developing strategies to engineer AnabaenaPCC7120 and control the spatial localization of metabolic pathway at the cellular level. By targeting specific enzymes into oxygen-depleting heterocysts, metabolic engineers can now implement oxygen-sensitive pathways into oxygen evolving cyanobacteria. This PhD work opens the door to an array of new applications spanning synthetic biology, structural biology to nanotechnology
2

Test the ability of axolotl decellularized ECM scaffold to improve skin wound healing in mice

Alariba, Walid 12 1900 (has links)
Le but de notre étude visait à déterminer si les matrices ECM (extracellular matrix) préparés à partir d'un modèle vertébré (Axolotl) capables de régénérer ses tissus suite à une blessure sont plus efficaces pour stimuler les réponses régénératives chez les animaux non régénérant (par exemple les mammifères). Nous avons testé la capacité de matrice ECM axolotl à améliorer la guérison des plaies cutanées dans des souris et nous les avons comparés à une matrice disponible commercialement (échafaudage Symbios PerioDerm) pour leur efficacité à favoriser la guérison des plaies. Des lésions d'excision ont été créées sur le dos de souris et les animaux ont été regroupés dans différents groupes; a-) ECM de peau axolotl décellularisée (groupe Axolotl), b-) matrice de derme acellulaire Symbios Perioderm (groupe PerioDerm), c-) grillage en titane (groupe témoin); respectivement. Les tissus des plaies ont été récoltés à des moments précis : 7 jours et 30 jours après la blessure pour évaluer la guérison des plaies. La guérison des blessures ayant reçu les différentes matrices a été comparées entre elles en utilisant le test de transillumination et des analyses histologiques. Les résultats indiquent que la ECM de peau d’axolotl décellularisée est bien tolérée par les souris, car aucun rejet n'a été observé. Le groupe qui a reçu l'ECM de la peau axolotl décellularisé a démontré une réépithélialisation, une densité cellulaire, une teneur en collagène (avec une organisation similaire à un tissu intact) et une vascularisation (angiogenèse) élevées par rapport aux groupes PerioDerm et témoins. La présence de follicules pileux était également observé dans le groupe axolotl (qui n'est pas présent dans PerioDerm et groupes de contrôle). Sur la base de nos résultats, l'hypothèse de base semble être correcte en ce qu'une matrice ECM provenant d'un régénérateur puissant semble favoriser la guérison plus efficacement chez les animaux normalement non régénérants. Cependant, des recherches supplémentaires devront être menées pour confirmer ces résultats. / The aim of our study sought to determine whether ECM scaffolds prepared from a vertebrate model (Axolotl) capable of regenerating tissues following injury are more effective at stimulating regenerative responses in non-regenerating animals (e.g., mammals). We tested the ability of axolotl decellularized ECM scaffolds to improve skin wound healing in mammalian models and compare the axolotl skin ECM scaffold to a commercially available one (Symbios PerioDerm scaffold) for efficiency in promoting wound healing. Excisional lesions were created on the back of mice, and animals in different groups were treated by; a-) decellularized axolotl skin ECM (Axolotl group), b-) Symbios Perioderm acellular dermis scaffold (PerioDerm group), d-) Titanized mesh only (Control group); respectively. Wound tissues were harvested at time points: 7- and 30-days post-wounding to assess the scaffolds impact on wound healing. Wound healing was compared between the Axolotl, PerioDerm and Control groups using transillumination test and histological analyses, Results indicate that the decellularized axolotl skin ECM is well tolerated by mammalian models, as no immune rejection was observed. The axolotl group that received the decellularized Axolotl Skin ECM demonstrated high reepithelialization, cellular density, collagen content (in a porous pattern similar to intact skin), vascularization (angiogenesis) compared to PerioDerm and control groups. The presence of hair follicles was also observed in the axolotl group (which is not present in PerioDerm and control groups). Based on our results, the basic hypothesis appears to be correct in that an ECM scaffold from a strong regenerator seems to promote healing more efficiently in non-regenerating animals. However, further research should be conducted to confirm these findings.

Page generated in 0.0492 seconds