• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métabolisme des acides aminés dans l’échappement de Francisella tularensis du phagosome des macrophages infectés / Amino acid metabolism in Francisella tularensis phagosomal escape

Ramond, Elodie 30 September 2014 (has links)
Francisella tularensis, l’agent étiologique de la tularémie, est une bactérie à multiplication intracellulaire facultative capable d’infecter de nombreux types cellulaires avec un tropisme particulier pour les macrophages. Cette bactérie est responsable d’infections graves chez de nombreuses espèces animales mais aussi chez l'homme. En particulier, la sous-espèce F. tularensis ssp tularensis a été classée comme agent de bioterrorisme de type A du fait de son pouvoir pathogène extrêmement élevé avec une faible dose infectieuse. Des approches de mutagénèse aléatoire et de criblage de banques de mutants ont suggéré l’importance des gènes impliqués dans les fonctions métaboliques et nutritionnelles dans le cycle intracellulaire de Francisella. Parmi ces gènes, on retrouve de très nombreux systèmes de transport d’acides aminés dont la sous-famille de transporteurs amino-polyamine-organocation (APC). Dans un premier temps, nous nous sommes intéressés à un transporteur APC codé par le gène FTN_0571, que nous avons appelé GadC. Pour comprendre l’importance de GadC dans la virulence de F. tularensis, nous avons réalisé un mutant chromosomique, délété du gène gadC, chez la sous-espèce novicida. Nous avons démontré que GadC est un importeur de glutamate et qu’il est nécessaire à la multiplication intracellulaire et à la virulence de Francisella, en assurant une sortie normale de la bactérie du phagosome. Ce phénomène s’explique par l’implication de GadC dans la résistance au stress oxydant généré dans le phagosome. De façon remarquable, la multiplication du mutant gadC est restaurée dans un contexte gp91phox-/-, incapable de générer des espèces réactives de l’oxygène, aussi bien in vitro qu’in vivo. Enfin, nous avons montré que l’activité de GadC modifie la production de certains intermédiaires du cycle de Krebs, et la transcription de l’enzyme qui leur est associée, démontrant un lien étroit entre la résistance au stress oxydant, le métabolisme du glutamate et la virulence de F. tularensis. Ces résultats nous ont conduits à nous intéresser à un autre transporteur appartenant à la sous-famille APC, présentant une homologie de 33% avec GadC, et que nous avons nommé ArgP. Nous montrons qu’un mutant argP présente un défaut de multiplication intracellulaire et de virulence résultant d’un retard sévère de sortie du phagosome. Ce phénotype s’explique par un défaut d’import d’arginine. L’inactivation du gène argP dans la sous-espèce holarctica LVS provoque des défauts de multiplication intracellulaire similaires à ceux observés dans la sous-espèce novicida, suggérant un rôle conservé du transporteur ArgP dans les différentes sous-espèces de F. tularensis. Comme l’arginine constitue un acide aminé essentiel pour la bactérie, nous nous sommes posés la question de l’importance de cet acide aminé durant la phase phagosomale. Une analyse du protéome bactérien du mutant argP de F. novicida, dans des conditions mimant les conditions nutritionnelles phagosomales, révèle que l’arginine joue un rôle prépondérant dans la traduction des protéines en affectant la synthèse des protéines ribosomales. L’ensemble des travaux réalisés au cours de cette thèse constitue la première démonstration de l’importance de l’acquisition d’acides aminés durant la phase phagosomale du cycle intracellulaire de F. tularensis. / Francisella tularensis, the etiologic agent of the zoonotic disease tularemia, is a facultative intracellular bacterium which can infect multiple cell types with specific tropism for macrophages. This bacterium is responsible for severe infections in numerous animal species and in humans. Of note, F. tularensis subsp. tularensis has been classified as a type A bioterrorism agent because of its high infectivity and very low infectious dose. Genome sequence analyses and genome-scale genetic studies have revealed the importance of genes involved in metabolic functions throughout the bacterial intracellular cycle. Among these genes, several amino acid transporter where found to belong to the amino-acid-polyamine organocation subfamily (APC), prompting us to address the role of these transporters in bacterial virulence. We first focused on the APC transporter encoded by gene FTN_0571 in F. tularensis subsp. novicida and named GadC. We showed that GadC was a genuine glutamate importer, necessary for Francisella intracellular multiplication and virulence. gadC inactivation completely blocked bacterial phagosomal escape. Remarkably, multiplication of a gadC mutant was restored in gp91phox-/- macrophages that are unable to generate reactive oxygen species. Altogether, our study revealed that glutamate uptake was critical in bacterial oxidative stress resistance in the phagosomal compartment and highlighted possible links between glutamate utilization and the tricarboxylic acid (TCA) cycle. These results prompted us to address the role of a second APC transporter sharing 33 % amino acid identity with GadC and named ArgP. argP inactivation severely delayed bacterial phagosomal escape, thus impairing intracellular multiplication and virulence. We demonstrated that ArgP was a high affinity arginine transporter, suggesting that impaired phagosomal escape might be directly linked to an arginine import defect. argP inactivation in the F. tularensis subsp. holarctica Live vaccine strain also leads to a severe intracellular multiplication defect, consistent with a conserved role among all F. tularensis subspecies. Arginine is an essential amino acid for F. tularensis. To understand the importance of this amino acid during the phagosomal phase of the Francisella intracellular life cycle, a proteomic analysis of the bacteria, in conditions of arginine limitation, was carried out. This analysis revealed that arginine limitation affected in the argP mutant the expression of a series of proteins and in particular of all the ribosomal proteins. One may imagine that intracellular bacteria could also sense nutrient limitations in the phagosome as a subcellular localization signal. Altogether, these studies constitute the first demonstration of the importance of amino acid acquisition during F. tularensis phagosomal escape.
2

Mécanismes de pathogénie intracellulaire des Straphylococcus aureus hypervirulents au cours de l'infection osseuse / Mechanisms of intracellular pathogeny of Staphylococcus aureus in bone infection

Dupieux, Céline 28 June 2018 (has links)
Staphylococcus aureus est capable d’être internalisé par les cellules eucaryotes, notamment au cours des infections osseuses, puis d’induire la mort de la cellule. Deux principaux mécanismes ont été décrits comme associés à la cytotoxicité de S. aureus : l’échappement phagosomal et le détournement de l’autophagie. Nous avons exploré ces deux mécanismes et le rôle de plusieurs toxines staphylococciques majeures (alpha-toxine (Hla), phenol-soluble modulins (PSM), bêta-toxine (Hlb)) dans la mort cellulaire, grâce à un modèle in vitro d’infection intracellulaire et des mutants isogéniques. L’échappement phagosomal nécessitant l’expression d’Hlb, inactivée par l’insertion d’un phage chez la majorité des souches cliniques, nous avons testé l’hypothèse d’une excision de ce phage induite par le stress intracellulaire. Nous avons montré que la restauration de l’expression d’Hlb par excision du phage existe de manière spontanée mais n’est pas induite par le passage intracellulaire et n’est pas associée à une hausse de la cytotoxicité. Dans un second temps, nous avons exploré la cytotoxicité d’une souche de S. aureus hypervirulente et avons montré qu’elle est associée à un détournement de l’autophagie via l’inhibition de la fusion autophagosome-lysosome, ceci étant associé à l’expressions des PSMa. Au contraire, Hla, les PSMß et la d-toxine ne semblent jouer aucun rôle intracellulaire chez les S. aureus hypervirulents. Enfin, nous avons mis en évidence que, dans un autre fond génétique de S. aureus, associé au pied diabétique, la cytotoxicité est principalement liée à la capacité de multiplication intracellulaire de la souche, modulée par la présence d’un phage / Staphylococcus aureus is able to invade eukaryotic cells, in particular during bone infections, and induce cell death. Two mechanisms have been described as associated with S. aureus cytotoxicity: phagosomal escape and autophagy subversion. We investigated these two mechanisms and the respective roles of several staphylococcal toxins, alpha-toxin (Hla), phenol-soluble modulins (PSMs) and beta-toxin (Hlb), in cell death, using an in vitro intracellular infection model and isogenic mutants of S. aureus. Because Hlb is required for phagosomal escape but this toxin is inactivated by a prophage inserted into the hlb gene in most of clinical isolates of S. aureus, we tested the hypothesis of an excision of this phage induced by intracellular stress. We showed that restoration of Hlb expression due to the excision of hlb-converting phage exists spontaneously but is not induced by intracellular environment and does not increase the cytotoxicity of the strain. In a second part, we explored the cytotoxicity of an hypervirulent strain of S. aureus and demonstrated that it is associated with a subversion of host cell autophagy via an inhibition of autophagosome-lysosome fusion, in a PSMa-dependent manner. Conversely, Hla, PSMß and d-toxin appear to have no intracellular role in the cytotoxicity of hypervirulent S. aureus strains. Finally, we showed that, in another genetic background of S. aureus associated with diabetic foot ulcer, cytotoxicity was linked to the ability of intracellular replication of the strain, which was modulated by the presence of a phage

Page generated in 0.0901 seconds