• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Low-energy electron-induced DNA damage product analysis and mechanistic studies of damage in short oligonucleotides

Li, Zejun January 2010 (has links)
The major objective of our group is to understand the mechanism of DNA damage induced by secondary low-energy electrons (LEE) arising from ionizing radiation and its relationship to radiosensitization and radiotherapy. Prof. Sanche has developed a novel low-energy electron irradiation system in which a relatively large area of thin films of DNA constituents can be irradiated with mono-energetic electrons under ultra high vacuum. This permits the irradiation of target DNA and the formation of sufficient degraded material to allow for chemical analysis (HPLC, GC/MS, and LC/MS/MS) of products remaining on the target surface, so as to elucidate the mechanism of LEE-induced DNA damage. My project focuses on simple systems, in which small DNA components nucleosides (dThd), nucleotides (pT, Tp, pTp), oligonucleotides (TT and TTT) and modified oligonucleotides (T5BrUT) are exposed to low-energy electrons, and the subsequent reactions are studied by chemical analysis of the products. My studies revealed three mechanisms of LEE-induced fragmentation reactions in DNA: 1) the terminal phosphate group has a larger cross-section in LEE-induced DNA damage; 2) initial LEE capture and subsequent bond breaking within the intermediate anion depend on the sequence and electron affinity of the bases; and 3) at 10 eV, one electron might induce double events. This study provides a chemical basis for the formation of DNA strand breaks by the interaction of LEE with DNA.
2

Protection des ions organiques contre les dommages induits à l'ADN par les électrons de basse énergie

Dumont, Ariane January 2009 (has links)
Il a été démontré que les électrons de basse énergie (EBE) peuvent induire des cassures simple brin (CSB) à l'ADN, via la formation d'anions transitoires qui décroissent par attachement dissociatif, ou dans d'autres états électroniques dissociatifs menant à la fragmentation. Afin d'effectuer une étude complète des effets des électrons de basse énergie sur la matière biologique, il est nécessaire de comprendre leur mécanisme d'interaction non seulement avec l'ADN, mais avec les constituants de son environnement. Les histones sont une composante importante de l'environnement moléculaire de l'ADN. Leur charge positive leur permet de s'associer aux groupements phosphate anionique de l'ADN. Le rôle principal de ces protéines basiques consiste à organiser l'ADN et l'empaqueter afin de former la chromatine. Les cations sont une autre composante importante de la cellule; ils jouent un rôle dans la stabilisation de la conformation B de l'ADN in vitro par leurs interactions avec les petits et grands sillons de l'ADN, ainsi qu'avec le groupement phosphate chargé négativement. Avec les histones, ils participent également à la compaction de l'ADN pour former la chromatine. Cette étude a pour but de comprendre comment la présence d'ions organiques (sous forme de Tris et d'EDTA) à proximité de l'ADN modifie le rendement de cassures simple brin induit par les électrons de basse énergie. Le Tris et l'EDTA ont été choisis comme objet d'étude, puisqu'en solution, ils forment le tampon standard pour solubiliser l'ADN dans les expériences in vitro (10mM Tris, 1mM EDTA). De plus, la molécule Tris possède un groupement amine alors que l'EDTA possède 4 groupements carboxyliques. Ensemble, ils peuvent se comporter comme un modèle simple pour les acides aminés. Le ratio molaire de 10 :1 de Tris par rapport à l'EDTA a pour but d'imiter le comportement des histones qui sont riches en arginine et lysine, acides aminés possédant un groupement amine chargé positivement additionnel. Des films d'ADN de différentes épaisseurs, possédant entre 0 et 32 ions organiques/ nucléotide, ont été irradiés avec des électrons de 10eV. Les dommages induits par les électrons, sous forme de cassures, ont été détectés par électrophorèse. Nous avons démontré que le rendement de cassure simple brin diminuait de façon dramatique en fonction du nombre d'ions organiques/ nucléotide. Aussi peu que 2 ions organiques/ nucléotide sont suffisant pour décroître le rendement de SSB de 70%. Cet effet radioprotecteur est en partie expliqué par l'augmentation de l'épaisseur des films, mais surtout par la modification du champ électrique à proximité de l'ADN, due à l'ajout de molécules chargées positivement. La modification du champ électrique près de l'ADN altère les paramètres de résonance comme le temps de vie de l'anion transitoire et la limite de dissociation, qui influent directement sur la section efficace d'attachement dissociatif. L'effet protecteur peut également être expliqué par la restauration des bases anioniques déshydrogénées induites par l'attachement dissociatif de l'électron sur une base (G(-H)[indice supérieur -]). Ce sont les molécules Tris qui, en transférant un atome d'hydrogène ou un proton, restaurent les bases déshydrogénées et inhibent par le fait même la formation de cassures simple brin. Ces résultats indiquent que les histones peuvent également participer à la réparation de dommages précoces induits à l'ADN avant qu'elles ne mènent à des dommages encore plus nocifs et difficiles à réparer, comme les cassures simples brins.
3

Nouvelle méthode expérimentale pour mesurer les dommages à l'ADN induits par la radiation / Quantification of electron induced desorption in thin films of thymine and thymidine

Lahaie, Pierre-Olivier January 2015 (has links)
Résumé : Lors de l’utilisation de la radiation pour le diagnostic et le traitement du cancer, l’ADN est une cible importante due à son rôle dans la division cellulaire. La radiation y dépose de l’énergie par production abondante (10[indice supérieur 5] e[indice supérieur −]/MeV) d’électrons de basse énergie (EBE) (<50 eV) menant à la production de radicaux et à la dissociation de molécules. Une meilleure compréhension de ces phénomènes physico-chimiques mènera au développement de nouvelles stratégies en radioprotection et en radiothérapie. Il est primordial d’identifier et de quantifier ces dommages initiaux. Suite à des résultats obtenus par des expériences récentes (Li et al., 2010) sur des couches minces d’ADN irradiées par des EBE dans le vide, nous suggérons que certains produits désorbent en quantité significative. Nous proposons une méthode pour mesurer cette perte de matière en utilisant une balance à quartz pour mesurer in situ les changements de masse totale. Ce mémoire présentera la conception et la construction de l’appareil ainsi que les résultats d’irradiation de la thymine et de la thymidine. À 25 ◦ C, le taux de perte de masse spontanée des échantillons joue un rôle important pour les petites molécules comme la thymine (126 uma). L’irradiation augmente d’abord ce taux qui diminue d’un facteur 5 à 15 après une exposition prolongée, signe de modifications notables de l’échantillon. Pour des molécules plus imposantes comme la thymidine (242 uma), il n’y a pas de désorption spontanée et le taux de désorption induite par des électrons de 50 eV est de 0,4 ± 0,1 uma/e[indice supérieur -]. Cette méthode, nécessaire à la calibration d’autres expériences réalisées par HPLC et spectrométrie de masse, permet de compléter la quantificationdes fragments, qui peuvent aussi être l’origine de lésions subséquentes. / Abstract : DNA is the principle target of radiotherapy (RT) due to its crucial role in cellular growth and function. Ionizing radiation (IR) delivers its energy into the cell and its nucleus via sequential ionization events that produce many low-energy electrons (LEE)(10[superscript 5]e[superscript −] per MeV) which drive subsequent molecular dissociations and the formation of radicals and other reactive species. Since a better understanding of these mechanisms is needed to develop new strategies for radioprotection and RT, it is essential to identify and to quantify the initial damage induced by IR. Recent chromatographic (HPLC) analysis of short oligonucleotide irradiated with LEE in vacuo (Li et al., 2010) revealed that only ∼30 % of the loss of intact molecules could be explained by the formation of identifiable radiation products. We hypothesize that electron stimulated desorption (ESD) may account for some of the unexplained loss of the missing molecules. Here we propose a new experimental method to quantify this loss using a quartz crystal microbalance to measure in situ the total mass change due to ESD. This thesis describes the design and the construction of the novel apparatus and presents results for LEE irradiated thymine (thy) and thymidine (dT). We find that at 25 ◦ C, the thermal-induced mass loss is important for small molecules such as thy (126 amu). Upon irradiation at 50 eV, the rate of mass loss initially increases, but then decreased by factors between 5 and 15 indicating structural changes occurring at the sample surface. For larger molecules such as dT (242 amu), there is no thermal evaporation at 25 ◦ C and the LEE induced rate of desorption at 50 eV is 0.4 ± 0.1 amu/e[superscript -]. This work is needed to calibrate HPLC and mass spectrometry experiments allowing us to quantify the fragment species produced by LEE that are expected to induce further and biologically significant damage.
4

DNA damage induced by low energy electrons (LEEs) / Dommages à l'ADN induits par les électrons de basse énergie

Choofong, Surakarn January 2016 (has links)
Abstract : The major objective of our study is to investigate DNA damage induced by soft X-rays (1.5 keV) and low-energy electrons (˂ 30 eV) using a novel irradiation system created by Prof. Sanche’s group. Thin films of double-stranded DNA are deposited on either glass and tantalum substrates and irradiated under standard temperature and pressure surrounded by a N[subscript 2] environment. Base release (cytosine, thymine, adenine and guanine) and base modifications (8-oxo-7,8-dihydro -2’-deoxyguanosine, 5-hydroxymethyl-2’-deoxyuridine, 5-formyl-2’-deoxyuridine, 5,6-dihydrothymidine and 5,6-dihydro-2’-deoxy uridine) are analyzed and quantified by LC-MS/MS. Our results reveal larger damage yields in the sample deposited on tantalum than those on glass. This can be explained by an enhancement of damage due to low-energy electrons, which are emitted from the metal substrate. From a comparison of the yield of products, base release is the major type of damage especially for purine bases, which are 3-fold greater than base modifications. A proposed pathway leading to base release involves the formation of a transient negative ion (TNI) followed by dissociative electron attachment (DEA) at the N-g lycosidic bond. On the other hand, base modification products consist of two major types of chemical modifications, which include thymine methyl oxidation products that likely arises from DEA from the methyl group of thymine, and 5,6-dihydropyrimidine that can involve the initial addition of electrons, H atoms, or hydride ions to the 5,6-pyrimidine double bond. / Résumé: L'objectif majeur de ce projet étude est d'étudier les lésions d'ADN induites par les rayons X mous (1,5 keV) et des électrons de faible énergie (˂ 30 eV) à partir d'un nouveau système d'irradiation créé par le groupe du Pr. Sanche. De minces couches d'ADN double brin sont déposées soit sur du verre ou sur les substrats de tantale. Celles-ci sont irradiées sous une température et pression environnante, mais dans une atmosphère de N[indice inférieur 2]. Les bases relâchées (cytosine, la thymine, l'adénine et la guanine) et les produits de modification de base (8-oxo-7,8-dihydro-2'-désoxyguanosine, 5-hydroxyméthyl-2'-désoxyuridine, 5-formyl-2'-désoxyuridine, 5,6-dihydrothymine et 5,6-dihydrouridine) sont analysés et quantifiés par LC-MS/MS. Nos résultats révèlent un plus grand rendement de dommages dans les échantillons déposés sur le tantale que celles sur le verre. Cette différence peut être expliquée par l’interaction des électrons de faible énergie qui sont photo émis des substrats métalliques. D'après les résultats obtenus, la libération de bases est un produit majeur en comparaison avec la modification de bases. Ceci provient, en particulier, surtout des purines qui libèrent la base a un niveau trois fois plus grand que la modification de la base. Une voie proposée, conduisant à la libération de base, implique la formation d'ions négatifs transitoires (TNI), suivie par l'attachement d'électrons dissociatifs (DEA) à la liaison N-glycosidique. En outre, les produits de modification de base sont composés en deux grands types de modifications chimiques. L’un des produits est l’oxydation du groupe méthyle de la thymine, qui probablement consiste de en d'hydrure (-H[indice supérieur -]) par l'intermédiaire de DEA. Alors que l’autre modification chimique est la formation de 5,6-dihydropyrimidine qui implique l'addition d'hydrure à la double liaison du 5,6-pyrimidine.
5

Mesure de sections efficaces absolues vibrationnelles pour la collision d’électrons de basse énergie (1-19 eV) avec le tétrahydrofurane (THF) condensé / Measurement of absolute vibrational cross sections for low-energy electron (1-19 eV) scattering from condensed tetrahydrofuran (THF)

Lemelin, Vincent January 2016 (has links)
Résumé: Ce mémoire de maîtrise est une étude des probabilités d’interactions (sections efficaces) des électrons de basse énergie avec une molécule d’intérêt biologique. Cette molécule est le tétrahydrofurane (THF) qui est un bon modèle de la molécule constituant la colonne vertébrale de l’ADN; le désoxyribose. Étant donné la grande quantité d’électrons secondaires libérés lors du passage des radiations à travers la matière biologique et sachant que ceux-ci déposent la majorité de l’énergie, l’étude de leurs interactions avec les molécules constituant l’ADN devient rapidement d’une grande importance. Les mesures de sections efficaces sont faites à l’aide d’un spectromètre à haute résolution de pertes d’énergie de l’électron. Les spectres de pertes d’énergie de l’électron obtenus de cet appareil permettent de calculer les valeurs de sections efficaces pour chaque vibration en fonction de l’énergie incidente de l’électron. L’article présenté dans ce mémoire traite de ces mesures et des résultats. En effet, il présente et explique en détail les conditions expérimentales, il décrit la méthode de déconvolution qui est utilisée pour obtenir les valeurs de sections efficaces et il présente et discute des 4 résonances observées dans la dépendance en énergie des sections efficaces. En effet, cette étude a permis de localiser en énergie 4 résonances et celles-ci ont toutes été confirmées par des recherches expérimentales et théoriques antérieures sur le sujet des collisions électrons lents-THF. En outre, jamais ces résonances n’avaient été observées simultanément dans une même étude et jamais la résonance trouvée à basse énergie n’avait été observée avec autant d’intensité que cette présente étude. Cette étude a donc permis de raffiner notre compréhension fondamentale des processus résonants impliqués lors de collisions d’électrons secondaires avec le THF. Les valeurs de sections efficaces sont, quant à elles, très prisées par les théoriciens et sont nécessaires pour les simulations Monte Carlo pour prédire, par exemple, le nombre d’ions formées après le passage des radiations. Ces valeurs pourront justement être utilisées dans les modèles de distribution et dépôt d’énergie au niveau nanoscopique dans les milieux biologiques et ceux-ci pourront éventuellement améliorer l’efficacité des modalités radiothérapeutiques. / Abstract: This master’s thesis is a study of interactions probabilities (cross sections) of low-energy electrons with an important biomolecule. The studied molecule is tetrahydrofuran (THF) which is a good model for the DNA backbone constituent deoxyribose. Knowing the important quantity of secondary electrons generated by the radiations passage through the biological matter and knowing that these low-energy electrons are responsible for the majority of the energy deposited, the study of their interactions with DNA constituents becomes rapidly important. Cross sections measurements are performed with a high-resolution electron energy loss spectrometer. The electron energy loss spectra obtained from this spectrometer allow cross sections calculations for each vibration mode as a function of electron incident energy. The article presented in this master thesis describes in details the experimental methods, it presents energy loss spectra and it shows and discusses results obtained in this project. The energy dependence of the cross sections allows the observation of multiple resonances in many vibration modes of THF. Effectively, this study allows the energy localisation of 4 resonances, which have all been confirmed by previous experimental and theoretical studies on the electron-THF collisions. Additionally, these resonances have never been observed simultaneously in the same study and the resonance found at low incident energy has never been observed with as much intensity as this present work. This study allowed a better understanding of the fundamental processes occurring in collisions of low-energy electrons with THF. The cross sections values are highly prized by theorists and they are essential for Monte Carlo simulations. These values will be used in models for energy distribution and deposition in biological matter at nanoscopic scales, thereby they will eventually improve the efficiency of radiotherapeutic modalities.
6

Effets des radiations gamma et des électrons de basse énergie sur la fonctionnalité de l'ADN / Effect of gamma radiation and low energy electron on the DNA functionality

Sahbani, Saloua January 2014 (has links)
Résumé : Il est généralement admis que les cassures double-brin (CDB) de l’ADN sont parmi les lésions les plus toxiques induites par les radiations ionisantes (RI). Les CDBs non ou mal réparées peuvent conduire à une instabilité génomique et à la mort cellulaire. La chimioradiothérapie concomitante est l’une des modalités la plus efficace pour le traitement de certains cancers surtout en stade avancé. Le rendement des CDBs a augmenté quand l’ADN a été irradié en présence de cisplatine avec des électrons de basse énergie (EBEs). Notre étude a pour objectif de réévaluer la contribution des CDBs et d’autres lésions induites par les RI dans la létalité cellulaire. L'effet des RI sur la fonctionnalité de l’ADN plasmidique modifié ou non de façon covalente par le cisplatine a été étudié par mesure de l'efficacité de transformation du plasmide dans E. coli. Les complexes cisplatine-ADN ont été préparés de telle sorte qu’il y avait en moyenne deux adduits de cisplatine par plasmide tel que mesuré par ICP-MS. Nos échantillons ont été irradiés en solution avec des doses croissantes de rayonnements gamma (137Cs). La présence de cisplatine a augmenté la formation des CDBs par un facteur de 2.6 par comparaison avec l'ADN non modifié. Malgré cette augmentation, le rendement des CDBs reste très faible et ne peut pas expliquer la perte de fonctionnalité observée. Alors que, les dommages multiples localisés (LMDS) (non-DSB cluster damage) donnant naissance à des CDBs sous l’action des enzymes de réparation la formamidopyrimidine [fapy]-DNA glycosylase (Fpg) et l’endonuclease III (Nth) où leur rendement a été augmenté d’un facteur de 2.1 lorsque l’ADN a été irradié en présence de cisplatine, ont pu expliquer la perte de fonctionnalité observée. Ces résultats suggèrent que le cisplatine peut agir, non seulement comme un agent chimiothérapeutique, mais aussi comme un radiosensibilisateur efficace par addition d’autres lésions à l’ADN. Aussi, pour la première fois nous avons pu évaluer l’effet des EBEs sur la létalité cellulaire. Des films d'ADN ont été préparés en utilisant la méthode d’adsorption douce sur un substrat de graphite pyrolytique, en présence de 1,3- diaminopropane (Dap[indice supérieur]2+) et ont été irradiées avec des EBEs 10 eV. Nous avons pu conclure, qu’en plus des CSBs, CDBs et des dommages de base, les EBEs sont capables aussi d’induire des LMDS (non-DSB cluster damage) et induire la perte de fonctionnalité de l’ADN. Le rendement des CDBs est très faible d’où ils n’ont pas pu expliquer la perte de fonctionnalité de plasmide observée, après irradiation avec les EBEs. Le rendement très faible des LMDS (non-DSB cluster damage) ne peut pas expliquer la perte de fonctionnalité de l’ADN. Il semble que les EBEs sont capables d’induire des dommages très proches les uns des autres et qui ne peuvent pas être révélés par les enzymes de réparation Fpg et Nth. Plus les dommages sont proches les uns des autres, plus leur réparation est difficile, car une de ces lésions peut inhiber la réparation de l’autre la plus proche. // Abstract : It is generally accepted that DNA double-strand breaks (DSB) are among the most toxic lesions induced by ionizing radiation (IR). Unrepaired or misrepaired DSB can lead to genomic instability and cell death. It is known that concomitant chemoradiation therapy is one of the most preferred methods for the treatment of certain cancers especially in advanced stage. The yield of DSBs was increased when DNA was irradiated with low energy electron (LEEs). The aims of our study was to reassess the contribution of DSBs and other lesions induced by indirect and direct effect of IR in cell lethality. The effect of IR on the DNA functionality of the plasmid modified covalently with cisplatin was studied by measuring the transformation efficiency of the plasmid in E. coli. Cisplatin-DNA complexes were prepared such that there was an average of two cisplatin adducts per plasmid as measured by ICP-MS. Aqueous solutions of the samples were irradiated with 137Cs [gamma]-rays at various doses. Gel electrophoresis analysis shows that cisplatin enhances, by a factor of 2.6, the formation of DSB by [gamma]-rays relative to those in unmodified DNA. Despite this increase, the yield of DSBs is very low and cannot explain the loss of functionality observed after transformation with plasmids modified with cisplatin. While locally multiple damaged sites (LMDS) revealed by repair enzymes Fpg (Formamidopyrimidine [fapy]-DNA glycosylase) and Nth (Endonuclease III) as DSB (nonDSB cluster damage), where their yield was increased by a factor of 2.1 when DNA was irradiated in the presence of cisplatin were able to explain the observed loss of DNA functionality. These results suggest that cisplatin may act not only as a chemotherapeutic agent, but also as an effective radiosensitizer by addition of other DNA lesions. For the first time, we could also evaluate the effect of low energy electrons (LEEs) on DNA functionality. Highly ordered DNA films were prepared on pyrolytic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap[superscript]2+) to bind together the plasmids and irradiated with LEE (10 eV). We concluded that in addition to CSBs, DSBs and base damage, LEEs induced the formation of non-DSB cluster damage and also induced the loss of DNA functionality under LEE irradiation. The yields of DSBs and of non-DSB cluster damage are too low and so one unable to explain the loss of DNA functionality. It seems that LEEs are able to induce a high complex damage that cannot be revealed by repair enzymes Fpg and Nth. The high complex damage is difficult to repair possibly because the repair of one lesion, may inhibit the repair of another.
7

Low-energy Electron Induced Chemistry in Supported Molecular Films / Chimie induite par électrons lents (0-20 eV) au sein de films moléculaires supportés

Sala, Leo Albert 27 November 2018 (has links)
Lorsque la matière condensée est soumise à des rayonnements de haute énergie, des électrons secondaires de basse énergie (0-20 eV) sont produits en grande quantité. Ces électrons participent à part entière aux dommages induits dans la matière, incluant les processus d’érosion et de modifications chimiques. Les fragments produits au sein du milieu réagissent et de nouvelles espèces sont formées. Plusieurs domaines d’application sont concernés par ces processus, et plus particulièrement le design de dispositifs par lithographie ou par dépôts assistés par faisceaux focalisés et l’astrochimie. Les enjeux concernent l’identification des mécanismes induits par les électrons lents, le contrôle des fragments réactifs et espèces stables formés, ainsi que la détermination de grandeurs quantitatives permettant d’apprécier l’efficacité des processus impliqués. L’approche développée dans ce travail de thèse consiste à irradier des surfaces et interfaces directement avec des faisceaux d’électrons de basse énergie afin d’étudier les processus induits. Les réponses de films moléculaires supportés modèles (d’épaisseur variable) sont étudiées en fonction de l’énergie incidente des électrons et des doses délivrées. Dans les cas favorables, des méthodologies ont pu être proposées pour accéder à l’estimation de sections efficaces effectives. Pour ce faire, trois techniques expérimentales sont combinées. Les films déposés et les résidus formés sont analysés par spectroscopie de perte d'énergie d’électrons à haute résolution (HREELS) et désorption programmée en température (TPD). Les fragments neutres (et non pas ioniques comme le plus souvent) désorbant sous irradiation sont analysés en masse afin de mener une étude de désorption stimulée par impact d’électrons (ESD).Dans le contexte de la fonctionnalisation de surface, le greffage de centres carbonés hybridés sp2 sur un substrat de diamant poly-cristallin hydrogéné a été réalisé par irradiation électronique d’une couche mince de benzylamine. A 11 eV, le mécanisme dominant implique la dissociation en neutres du précurseur. La section efficace effective de greffage a pu être déterminée par HREELS suite à une unique irradiation, en tirant avantage du profil du faisceau d’irradiation. Dans le contexte de l’astrochimie, la réponse à l’irradiation par électrons lents de glaces d’ammoniac amorphes et cristallisées a été étudiée. La désorption de molécules d’ammoniac a été observée. Elle peut résulter de l’érosion directe du film et de mécanismes de désorption induite par excitation électronique (DIET). Différents processus de fragmentation/recombinaison ont été mis en évidence via la désorption des espèces neutres NHx (x = 1,2), H2 et N2. Une chimie particulièrement riche est induite par irradiation électronique à 13 eV. L’analyse temporelle des rendements ESD a permis la détermination de la section efficace de la désorption de NH3, et l’observation de la formation retardée de N2 et H2. L’analyse TPD des résidus a démontré la synthèse de diazène (N2H2) et d’hydrazine (N2H4) dans le film. Ces résultats peuvent aider à l’élucidation des écarts observés dans les abondances de NH3 et N2 dans les régions denses de l'espace. Enfin, les premiers travaux réalisés pour fonctionnaliser un substrat de façon résolue à l’échelle micrométrique sous irradiation d’électrons lents sont également présentés. La faisabilité de la procédure utilisant un microscope électronique à basse énergie (LEEM) a été démontré sur une monocouche de terphenylthiol (TPT). Des motifs de 5 μm de travaux de sortie différents ont été imprimés en travaillant à des énergies de 10-50 eV. Ensuite la réponse de films modèles de résines lithographiques (PMMA, polyméthacrylate de méthyle) à des irradiations électroniques a été étudiée, afin d’identifier les énergies favorables en vue d’une modification de surface résolue spatialement. / High-energy irradiation of condensed matter leads to the production of copious amounts of low-energy (0-20 eV) secondary electrons. These electrons are known to trigger various dissociative processes leading to observed damages including erosion and chemical modifications. The resulting reactive species within the condensed media can also lead to the synthesis of new molecules. This has implications in several applications most especially in the design of lithographic methods, focused beam-assisted deposition, as well as in astrochemistry. In all these applications, it is important to identify the processes induced by low-energy electrons, study the reactive fragments and stable molecules produced to determine possibilities of controlling them, and generate quantitative data to gauge the efficiencies of these processes. The approach developed for this PhD work consists of directly irradiating surfaces and interfaces using low-energy electrons and studying the processes that arise. The responses of different model molecular films (of varying thickness) were studied as a function of incident electron energy and dose. In favorable cases, methodologies proposed herein can be used to estimate effective cross sections of observed processes. Three complementary surface-sensitive techniques were utilized for this purpose. To characterize the deposited films and formed residues, the High Resolution Electron-Energy Loss Spectroscopy (HREELS) and Temperature Programmed Desorption (TPD) were used. Neutral fragments (as opposed to their often-detected ionic counterparts) desorbing under electron irradiation were monitored using a mass spectrometer in a technique called Electron Stimulated Desorption (ESD).Within the context of surface functionalization, the grafting of sp2-hybridized carbon centers on a polycrystalline hydrogenated diamond substrate was realized through electron irradiation of a thin layer of benzylamine precursor deposited on its surface. At 11 eV, the dominant mechanism is proposed to be neutral dissociation of the precursor molecules. The effective cross section of the grafting process was estimated in only a single measurement from the HREELS map of the sample surface, taking advantage of the electron beam profile. Within the context of astrochemistry, on the other hand, the responses of crystalline and amorphous NH3 ices were studied under electron impact. The desorption of intact NH3 was observed which resulted in the direct erosion of the film proceeding through a mechanism consistent with desorption induced by electronic transitions (DIET). Different fragmentation and recombination processes were also observed as evidenced by detected neutral species like NHx (x=1,2), N2, and H2. Aside from desorption, a wealth of chemical processes was also observed at 13 eV. Temporal ESD at this energy allowed for the estimation of the effective cross section of NH3 desorption and observing the delayed desorption of N2 and H2. TPD analysis of the residues also provided evidence of N2H2 and N2H4 synthesis in the film. These results can help explain the observed discrepancies in abundances of NH3 and N2 in dense regions in space. Lastly, this PhD work will present prospects for these electron-induced processes to be constrained spatially in microscopic dimensions for lithographic applications. The feasibility of the procedure utilizing Low-Energy Electron Microscope (LEEM) was demonstrated on a terphenylthiol self-assembled monolayer (TPT SAM) specimen. Spots of 5 μm in diameter with different work functions were imprinted on the surface using energies from 10-50 eV. Electron-induced reactions in thin-film resists (PMMA, poly(methyl methacrylate)) were also studied at low-energy identifying opportunities for energy- and spatially-resolved surface modification.

Page generated in 0.121 seconds