Spelling suggestions: "subject:"aquation dde liénard"" "subject:"aquation dde bénard""
1 |
Existence de solution antipériodique de l’équation impulsive de Liénard avec une force Henstock-Kurzweil intégrableBondo, Étienne January 2016 (has links)
Notre travail se consacre à l’étude de l’existence de solution T-anti-périodique de l’équation de Liénard dans le cas impulsif. Dans notre thèse, cette équation sera appliquée à l’équation du pendule simple, de Josephson dans la super-conductivité et enfin à l’équation de Van der Pol pour modéliser un circuit de triode à tube vide. On considérera [florin] et J des actions extérieures sur le système où [florin] est une force Lebesgue intégrable (respectivement Henstock-Kurzweil intégrable au second chapitre) et J (parfois noté I) une stimulation impulsive. En appliquant le théorème du point fixe de Banach, on obtient des théorèmes d’existence de solution au sens de fonctions généralisées soumise à un ensemble de conditions données par les bornes à priori. Ensuite, par le même théorème, la suite d’itérations G[indice supérieur n] ([théta][indice inférieur 0]) converge uniformément vers la solution [théta] à la vitesse de convergence bornée avec la première dérivée […] est de variation totale finie sur [0; 2T] et la dérivée seconde généralisée […] Lebesgue intégrable sur [0; 2T] dans le cas non impulsif. Finalement, sous les mêmes hypothèses avec [florin] Henstock-Kurzweil (HK) intégrable, nous obtiendrons des conditions qui garantissent l’existence d’une solution T-antipériodique [théta] absolument continue sur R de l’équation de Liénard, qui admet à la fois une dérivée première […] de variation bornée et la seconde dérivée généralisée […] qui est HK--intégrable dans le cas non impulsif. Comme au premier chapitre nous considérerons également le cas des instants d’impulsion [gamma][indice inférieur kappa] indépendants d’état avec [florin] HK--intégrable. À chaque fois nous donnons quelques exemples d’illustration pour appuyer nos résultats. [Certains symboles non conformes]
|
2 |
Oscillations dans des équations de Liénard et des équations d'évolution semi-linéaires / No English title availableBoudjema, Souhila 10 September 2013 (has links)
Les principaux résultats obtenus dans ce travail concernent l’existence et l’unicité des solutions de différents types de l’équation de Liénard forcée et des résultats de dépendance pour les solutions S-asymptotiquement w-périodiques d’équations d’évolution. Pour réaliser notre objectif, nous utilisons des outils d’analyse fonctionnelle non linéaire et des résultats sur des équations linéaire. / No English summary available.
|
Page generated in 0.0832 seconds