Spelling suggestions: "subject:"établissement dde clés"" "subject:"établissement dee clés""
1 |
The art of post-truth in quantum cryptographyZafar Jafarzadeh, Sara 01 1900 (has links)
L’établissement de clé quantique (abrégé QKD en anglais) permet à deux participants distants, Alice et Bob, d’établir une clé secrète commune (mais aléatoire) qui est connue uniquement de ces deux personnes (c’est-à-dire inconnue d’Ève et de tout autre tiers parti). La clé secrète partagée est inconditionnellement privée et peut être plus tard utilisée, par Alice et Bob, pour transmettre des messages en toute confidentialité, par exemple sous la forme d’un masque jetable. Le protocole d’établissement de clé quantique garantit la confidentialité inconditionnelle du message en présence d’un adversaire (Ève) limité uniquement par les lois de la mécanique quantique, et qui ne peut agir sur l’information que se partagent Alice et Bob que lors de son transit à travers des canaux classiques et quantiques. Mais que se passe-t-il lorsque Ève a le pouvoir supplémentaire de contraindre Alice et/ou Bob à révéler toute information, jusqu’alors gardée secrète, générée lors de l’exécution (réussie) du protocole d’établissement de clé quantique (éventuellement suite à la transmission entre Alice et Bob d’un ou plusieurs messages chiffrés classique à l’aide de cette clé), de manière à ce qu’Ève puisse reproduire l’entièreté du protocole et retrouver la clé (et donc aussi le message qu’elle a chiffré) ? Alice et Bob peuvent-ils nier la création de la clé de manière plausible en révélant des informations mensongères pour qu’Ève aboutisse sur une fausse clé ? Les protocoles d’établissement de clé quantiques peuvent-ils tels quels garantir la possibilité du doute raisonnable ? Dans cette thèse, c’est sur cette énigme que nous nous penchons.
Dans le reste de ce document, nous empruntons le point de vue de la théorie de l’information pour analyser la possibilité du doute raisonnable lors de l’application de protocoles d’établissement de clé quantiques. Nous formalisons rigoureusement différents types et degrés de doute raisonnable en fonction de quel participant est contraint de révéler la clé, de ce que l’adversaire peut demander, de la taille de l’ensemble de fausses clés qu’Alice et Bob peuvent prétendre établir, de quand les parties doivent décider de la ou des clés fictives, de quelle est la tolérance d’Ève aux événements moins probables, et du recours ou non à des hypothèses de calcul.
Nous définissons ensuite rigoureusement une classe générale de protocoles d’établissement de clé quantiques, basée sur un canal quantique presque parfait, et prouvons que tout protocole d’établissement de clé quantique appartenant à cette classe satisfait la définition la plus générale de doute raisonnable : à savoir, le doute raisonnable universel. Nous en fournissons quelques exemples. Ensuite, nous proposons un protocole hybride selon lequel tout protocole
QKD peut être au plus existentiellement déniable. De plus, nous définissons une vaste classe de protocoles d’établissement de clé quantiques, que nous appelons préparation et mesure, et prouvons l’impossibilité d’instiller lors de ceux-ci tout degré de doute raisonnable.
Ensuite, nous proposons une variante du protocole, que nous appelons préparation et mesure floues qui offre un certain niveau de doute raisonnable lorsque Ève est juste. Par la suite, nous proposons un protocole hybride en vertu duquel tout protocole d’établissement de clé quantique ne peut offrir au mieux que l’option de doute raisonnable existentiel. Finalement, nous proposons une variante du protocole, que nous appelons mono-déniable qui est seulement Alice déniable ou Bob déniable (mais pas les deux). / Quantum Key Establishment (QKD) enables two distant parties Alice and Bob to establish a common random secret key known only to the two of them (i.e., unknown to Eve and anyone else). The common secret key is information-theoretically secure. Later, Alice and Bob may use this key to transmit messages securely, for example as a one-time pad. The QKD protocol guarantees the confidentiality of the key from an information-theoretic perspective against an adversary Eve who is only limited by the laws of quantum theory and can act only on the signals as they pass through the classical and quantum channels. But what if Eve has the extra power to coerce Alice and/or Bob after the successful execution of the QKD protocol forcing either both or only one of them to reveal all their private information (possibly also after one or several (classical) ciphertexts encrypted with that key have been transmitted between Alice and Bob) then Eve could go through the protocol and obtain the key (hence also the message)? Can Alice and Bob deny establishment of the key plausibly by revealing fake private information and hence also a fake key? Do QKD protocols guarantee deniability for free in this case? In this Thesis, we investigate this conundrum.
In the rest of this document, we take an information-theoretic perspective on deniability in quantum key establishment protocols. We rigorously formalize different levels and flavours of deniability depending on which party is coerced, what the adversary may ask, what is the size of the fake set that surreptitious parties can pretend to be established, when the parties should decide on the fake key(s), and what is the coercer’s tolerance to less likely events and possibly also computational assumptions.
We then rigorously define a general class of QKD protocols, based on an almost-perfect quantum channel, and prove that any QKD protocol that belongs to this class satisfies the most general flavour of deniability, i.e.,universal deniability. Moreover, we define a broad class of QKD protocols, which we call prepare-and-measure, and prove that these protocols are not deniable in any level or flavour.
Moreover, we define a class of QKD protocols, which we refer to as fuzzy prepare-andmeasure, that provides a certain level of deniability conditioned on Eve being fair. Furthermore, we propose a hybrid protocol under which any QKD protocol can be at most existentially deniable. Finally, we define a class of QKD protocols, which we refer to as mono-deniable, which is either Alice or Bob (but not both) deniable.
|
2 |
Contribution à la sécurité des communications des réseaux de capteurs sans filMansour, Ismail 05 July 2013 (has links) (PDF)
Les réseaux de capteurs sans fil (RCSF) sont devenus un thème porteur aussi bien pour la recherche académique que pour les activités des services de R&D en raison de leur simplicité de déploiement et de leur potentiel applicatif dans des domaines très variés (militaire, environnemental, industriel). Un RCSF est composé d'un ensemble de noeuds devant être opérationnels et autonomes énergétiquement pour de longues périodes. De ce fait ils sont limités en capacité mémoire et de calcul, et contraint à exploiter une faible puissance de transmission, ce qui en limite leur portée et rend leur débit modeste. Le besoin de sécuriser les communications dans un RCSF dépend de la criticité des données échangées pour l'application supportée. La solution doit reposer sur des échanges sûrs, confidentiels et fiables. Pour assurer la sécurisation des échanges, des techniques de cryptographie existent dans la littérature. Conçues à l'origine pour des réseaux informatiques majoritairement câblés, elles se basent généralement sur des algorithmes complexes et gourmands en ressource. Dans le cadre de cette thèse, nous avons proposé, implémenté et évalué une architecture sécurisée et dynamique adaptée aux communications des RCSF. Elle permet de garantir et de maintenir la sécurité des communications durant toute la durée de vie d'un réseau multi-saut. Nous avons utilisé et adapté des algorithmes standards de cryptographie, tels que AES-CTR et la suite d'algorithmes basée sur ECC, qui permettent à notre architecture de résister à la majorité d'attaques. Nous avons quantifié le surcoût en temps de calcul et en occupation mémoire de notre solution. Les résultats d'implémentation de notre proposition sont issus de mesures réelles faites sur une maquette réalisée à partir de cartes TelosB.
|
3 |
Contribution à la sécurité des communications des réseaux de capteurs sans fil / Contribution to the security of communications in wireless sensor networksMansour, Ismail 05 July 2013 (has links)
Les réseaux de capteurs sans fil (RCSF) sont devenus un thème porteur aussi bien pour la recherche académique que pour les activités des services de R&D en raison de leur simplicité de déploiement et de leur potentiel applicatif dans des domaines très variés (militaire, environnemental, industriel). Un RCSF est composé d'un ensemble de noeuds devant être opérationnels et autonomes énergétiquement pour de longues périodes. De ce fait ils sont limités en capacité mémoire et de calcul, et contraint à exploiter une faible puissance de transmission, ce qui en limite leur portée et rend leur débit modeste. Le besoin de sécuriser les communications dans un RCSF dépend de la criticité des données échangées pour l'application supportée. La solution doit reposer sur des échanges sûrs, confidentiels et fiables. Pour assurer la sécurisation des échanges, des techniques de cryptographie existent dans la littérature. Conçues à l'origine pour des réseaux informatiques majoritairement câblés, elles se basent généralement sur des algorithmes complexes et gourmands en ressource. Dans le cadre de cette thèse, nous avons proposé, implémenté et évalué une architecture sécurisée et dynamique adaptée aux communications des RCSF. Elle permet de garantir et de maintenir la sécurité des communications durant toute la durée de vie d'un réseau multi-saut. Nous avons utilisé et adapté des algorithmes standards de cryptographie, tels que AES-CTR et la suite d'algorithmes basée sur ECC, qui permettent à notre architecture de résister à la majorité d'attaques. Nous avons quantifié le surcoût en temps de calcul et en occupation mémoire de notre solution. Les résultats d’implémentation de notre proposition sont issus de mesures réelles faites sur une maquette réalisée à partir de cartes TelosB. / Wireless sensor networks (WSNs) have become an attractive topic for both academic research and the activity of R&D services due to their simple deployment and their potential of application in varied fields (military, environmental, industrial). A WSN is composed of a set of nodes that are supposed to operate and to be energetically autonomous for long durations. Thus, they are limited in memory and computing capacities, and constrained to function in a low-power transmission mode which limit their communication range and leave them with low data rates.The need to secure communications in a WSN depends on the criticality of the exchanged data for the supported application. The solution must be based on safe, confidential and reliable exchanges. To ensure the security of exchanges, cryptographic techniques exist in the literature. Originally designed for mostly wired computer networks, they are usually based on complex and resource-consuming algorithms. In this thesis, we have proposed, implemented and evaluated a secure and dynamic architecture suitable for WSNs communications. It ensures and maintains secured communications throughout the lifetime of a multi-hop network. We have used and adapted standard cryptographic algorithms, such as AES-CTR and algorithms based on ECC cipher suites, which allow our architecture to resist against most attacks. We have quantified the overhead of our solution in terms of computation time and memory occupancy. The results of implementation of our proposal are obtained through real measurements on testbeds using TelosB motes.
|
Page generated in 0.4038 seconds