• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação de tecidos da mama em massa e não-massa usando índice de diversidade taxonômico e máquina de vetores de suporte / Classification of breast tissues in mass and non-mass using index of Taxonomic diversity and support vector machine

OLIVEIRA, Fernando Soares Sérvulo de 20 February 2013 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-17T17:25:58Z No. of bitstreams: 1 FernandoOliveira.pdf: 2347086 bytes, checksum: 0b2d54b7d13b7467bee9db13f63100f5 (MD5) / Made available in DSpace on 2017-08-17T17:25:58Z (GMT). No. of bitstreams: 1 FernandoOliveira.pdf: 2347086 bytes, checksum: 0b2d54b7d13b7467bee9db13f63100f5 (MD5) Previous issue date: 2013-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Breast cancer is the second most common type of cancer in the world and difficult to diagnose. Distinguished Systems Aided Detection and Diagnosis Computer have been used to assist experts in the health field with an indication of suspicious areas of difficult perception to the human eye, thus aiding in the detection and diagnosis of cancer. This dissertation proposes a methodology for discrimination and classification of regions extracted from the breast mass and non-mass. The Digital Database for Screening Mammography (DDSM) is used in this work for the acquisition of mammograms, which are extracted from the regions of mass and non-mass. The Taxonomic Diversity Index (∆) and the Taxonomic Distinctness (∆*) are used to describe the texture of the regions of interest, originally applied in ecology. The calculation of those indices is based on phylogenetic trees, which applied in this work to describe patterns in regions of the images of the breast with two regions bounding approaches to texture analysis: circle with rings and internal with external masks. Suggested in this work to be applied in the description of patterns of regions in breast imaging approaches circle with rings and masks as internal and external boundaries regions for texture analysis. Support Vector Machine (SVM) is used to classify the regions in mass or non-mass. The proposed methodology provides successful results for the classification of masses and non-mass, reaching an average accuracy of 99.67%. / O câncer de mama é o segundo tipo de câncer mais frequente no mundo e de difícil diagnóstico. Distintos Sistemas de Detecção e Diagnóstico Auxiliados por Computador (Computer Aided Detection/Diagnosis) têm sido utilizados para auxiliar especialistas da área da saúde com a indicação de áreas suspeitas de difícil percepção ao olho humano, assim ajudando na detecção e diagnóstico de câncer. Este trabalho propõe uma metodologia de discriminação e classificação de regiões extraídas da mama em massa e não-massa. O banco de imagens Digital Database for Screening Mammography (DDSM) é usado neste trabalho para aquisição das mamografias, onde são extraído as regiões de massa e não-massa. Na descrição da textura da região de interesse são utilizados os Índices de Diversidade Taxonômica (∆) e Distinção Taxonômica (∆*), provenientes da ecologia. O cálculo destes índices é baseado nas árvores filogenéticas, sendo aplicados neste trabalho na descrição de padrões em regiões das imagens da mama com duas abordagens de regiões delimitadoras para análise da textura: círculo com anéis e máscaras internas com externas. Para classificação das regiões em massa e não-massa é utilizado o classificador Máquina de Vetores de Suporte (MVS). A metodologia apresenta resultados promissores para a classificação de massas e não-massas, alcançando uma acurácia média de 99,67%.

Page generated in 0.0989 seconds