Spelling suggestions: "subject:"6ptica linear"" "subject:"aptica linear""
1 |
Sistemas de comunicação quântica com óptica linear / Systems of quantum communication with linear opticalBrito, Daniel Barbosa de 06 February 2007 (has links)
BRITO, D. B. Sistemas de comunicação quântica com óptica linear. 2007. 83 f. Dissertação (Mestrado em Engenharia de Teleinformática) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2007. / Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-04-04T13:44:07Z
No. of bitstreams: 1
2007_dis_dbbrito.pdf: 953887 bytes, checksum: 307a30fee439822009f641e70419712c (MD5) / Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-04-05T18:41:24Z (GMT) No. of bitstreams: 1
2007_dis_dbbrito.pdf: 953887 bytes, checksum: 307a30fee439822009f641e70419712c (MD5) / Made available in DSpace on 2016-04-05T18:41:24Z (GMT). No. of bitstreams: 1
2007_dis_dbbrito.pdf: 953887 bytes, checksum: 307a30fee439822009f641e70419712c (MD5)
Previous issue date: 2007-02-06 / In this dissertation it is considered a quantum error correction system for coherent states of light and a complete optical system for probabilistic teleportation of single-photon polarization encoded qubit. Initially, the quantum error correction with the use of redundancy is analyzed. After that, it is presented a form of error correction using time-bin qubit without redundancies. Based on this last approach, a passive quantum error correction system, that is, without external control and synchronization, for quantum communication system employing coherent states, using only linear optical devices, is proposed. It is shown that the quantum error correction system also works for bipartite states of qubits. Following, the teleportation of quantum states is analyzed and an optical system for probabilistic teleportation of single-photon polarization encoded qubit, using only linear optical devices, is proposed. Finally, the error correction and teleportation topics are put together in the proposal of a probabilistic teleportation system using an error correction system for distribution of the entangled pair of photons / Nesta dissertação e proposto um sistema de correção de erro quântico para estados coerentes de luz e um sistema óptico completo para a teleportação probabilística de qubits codificados na polarização de um fóton. O trabalho se inicia com a analise de correção de erro quântico com a utilização de redundâncias. Depois, e apresentada uma forma de correção de erros utilizando qubits do tipo time-bin e sem acréscimo de redundâncias. Com base nesta abordagem, foi proposto um sistema de correção de erro quântico passivo, isto e, que nao precisa de controle externo de sincronização, para sistemas de comunicações quânticas que utilizam estados coerentes de luz, utilizando apenas dispositivos opticos lineares. E mostrado, também, que o sistema de correção de qubits individuais pode ser usado para corrigirem estados bipartes de qubits. Em seguida, e analisada a teleportação de estados quânticos e proposto um sistema probabilístico de teleportacao de estados quânticos de polarização de fótons isolados utilizando dispositivos ópticos lineares. Por fim, os tópicos de correção de erro e teleportacao são unidos na proposição de um sistema probabilístico de teleportacao empregando um sistema de correção de erros na distribuição do par de fótons entrelaçados.
|
2 |
Efeitos fotofísicos em moléculas de Porfirina e Ftalocianina: uma relação entre geometrias e substituintes / Photophysical effects on Porphyrin and Phthalocyanine molecules: a relation between geometries and substituentsCocca, Leandro Henrique Zucolotto 20 February 2018 (has links)
Nos últimos anos, materiais orgânicos tem ganhado grande interesse em áreas que envolvem espectroscopia óptica não linear. Isso se dá devido aos materiais possuirem consideráveis efeitos ópticos não lineares, apresentarem facilidade de síntese e possuirem propriedades fotofísicas e fotoquímicas que os tornam capazes de serem empregados em um vasto número de possíveis aplicações. Entre os materiais orgânicos, é possível destacar as Porfirinas e Ftalocianinas. A síntese desses materiais possibilita um grande número de classes ou grupos distintos, os quais podem ser distinguidos por suas estruturas periféricas e/ou íons metálicos que podem ser inseridos no interior dos macrociclos. Isso resulta em alterações das suas propriedades ópticas, ou seja, através de alterações das estruturas químicas das Porfirinas e Ftalocianinas é possível modelar suas propriedades ópticas, e assim, de acordo com essas propriedades, discriminar em quais aplicações podem ser empregados. Tais materiais, tendo em vista suas propriedades fotofísicas, podem ser empregados como fotossensitizadores na terapia fotodinâmica, células solares, limitadores ópticos ou fotobactericidas entre outras mais. Sendo assim, nesta Dissertação de Mestrado é realizado uma caracterização espectroscópica linear e não linear desses materiais, para assim deterinar propriedades ópticas específicas que podem ser empregadas nas aplicações citadas. Para tal caracterização espectroscópica, foram empregadas técnicas de espectroscopia linear e não linear, dentre elas a técnica de Varredura-Z foi empregada em três configurações distintas (Varredura-Z por Pulso Único, por Trem de Pulsos e por Luz Branca Supercontínua) para determinação de absorções de estados excitados. Tempos de vida de fluorescência, tempos de decaimento radiativo e de conversão interna, seções de choque de absorção de estado singleto e tripleto (fundamental e excitado) e eficiências quânticas (fluorescência, conversão interna e converção para tripleto) foram os parâmetros determinados e, assim, através desses parâmetros, foi possível entender como alterações nas estruturas químicas (periféricas e íons metálicos) influenciam consideravelmente as propriedades de Porfirinas e Ftalocianinas. / In last years, organic materials have won great interest in areas involving non-linear optical spectroscopy. This is due to the fact that the materials have considerable non-linear optical effects, are easy to synthesize, and have photophysical and photochemical properties that make them capable of being used in a wide range of possible applications. Among the organic materials, it is possible to highlight Porphyrins and Phthalocyanines. The synthesis of these materials enables a large number of distinct classes or groups, which can be distinguished by their peripheral structures and / or metal ions that can be inserted into the macrocycles. It results in changes of its optical properties, that is, replacing the chemical structures of such Porphyrins and Phthalocyanines, it is possible to tune its optical properties, and thus, according to these properties, to discriminate in which applications they can be used. Such materials, in view of their photophysical properties, can be used as photosensitizers in photodynamic therapy, solar cells, optical limiters or photobactericides among others. Thus, in this Master\'s Dissertation, a linear and nonlinear spectroscopic characterization of these materials is carried out in order to determine specific optical properties that can be employed in the cited applications. For this spectroscopic characterization, linear and nonlinear spectroscopy techniques were employed, among them the Z-Scan technique was employed in three distinct configurations (Z-Scan by Single Pulse, by Pulse Train and by Supercontinuum White Light) for determination of absorptions of excited states. Fluorescence lifetimes, radiative decay and internal conversion times, single and triple triplet (fundamental and excited) and quantum efficiencies (fluorescence, internal conversion, and triplet formation) were the parameters determined, and with these parameters, it was possible to understand how changes in the chemical structures (peripheral and metallic ions) modify considerable the optical properties of Porphyrins and Phthalocyanines.
|
3 |
Efeitos fotofísicos em moléculas de Porfirina e Ftalocianina: uma relação entre geometrias e substituintes / Photophysical effects on Porphyrin and Phthalocyanine molecules: a relation between geometries and substituentsLeandro Henrique Zucolotto Cocca 20 February 2018 (has links)
Nos últimos anos, materiais orgânicos tem ganhado grande interesse em áreas que envolvem espectroscopia óptica não linear. Isso se dá devido aos materiais possuirem consideráveis efeitos ópticos não lineares, apresentarem facilidade de síntese e possuirem propriedades fotofísicas e fotoquímicas que os tornam capazes de serem empregados em um vasto número de possíveis aplicações. Entre os materiais orgânicos, é possível destacar as Porfirinas e Ftalocianinas. A síntese desses materiais possibilita um grande número de classes ou grupos distintos, os quais podem ser distinguidos por suas estruturas periféricas e/ou íons metálicos que podem ser inseridos no interior dos macrociclos. Isso resulta em alterações das suas propriedades ópticas, ou seja, através de alterações das estruturas químicas das Porfirinas e Ftalocianinas é possível modelar suas propriedades ópticas, e assim, de acordo com essas propriedades, discriminar em quais aplicações podem ser empregados. Tais materiais, tendo em vista suas propriedades fotofísicas, podem ser empregados como fotossensitizadores na terapia fotodinâmica, células solares, limitadores ópticos ou fotobactericidas entre outras mais. Sendo assim, nesta Dissertação de Mestrado é realizado uma caracterização espectroscópica linear e não linear desses materiais, para assim deterinar propriedades ópticas específicas que podem ser empregadas nas aplicações citadas. Para tal caracterização espectroscópica, foram empregadas técnicas de espectroscopia linear e não linear, dentre elas a técnica de Varredura-Z foi empregada em três configurações distintas (Varredura-Z por Pulso Único, por Trem de Pulsos e por Luz Branca Supercontínua) para determinação de absorções de estados excitados. Tempos de vida de fluorescência, tempos de decaimento radiativo e de conversão interna, seções de choque de absorção de estado singleto e tripleto (fundamental e excitado) e eficiências quânticas (fluorescência, conversão interna e converção para tripleto) foram os parâmetros determinados e, assim, através desses parâmetros, foi possível entender como alterações nas estruturas químicas (periféricas e íons metálicos) influenciam consideravelmente as propriedades de Porfirinas e Ftalocianinas. / In last years, organic materials have won great interest in areas involving non-linear optical spectroscopy. This is due to the fact that the materials have considerable non-linear optical effects, are easy to synthesize, and have photophysical and photochemical properties that make them capable of being used in a wide range of possible applications. Among the organic materials, it is possible to highlight Porphyrins and Phthalocyanines. The synthesis of these materials enables a large number of distinct classes or groups, which can be distinguished by their peripheral structures and / or metal ions that can be inserted into the macrocycles. It results in changes of its optical properties, that is, replacing the chemical structures of such Porphyrins and Phthalocyanines, it is possible to tune its optical properties, and thus, according to these properties, to discriminate in which applications they can be used. Such materials, in view of their photophysical properties, can be used as photosensitizers in photodynamic therapy, solar cells, optical limiters or photobactericides among others. Thus, in this Master\'s Dissertation, a linear and nonlinear spectroscopic characterization of these materials is carried out in order to determine specific optical properties that can be employed in the cited applications. For this spectroscopic characterization, linear and nonlinear spectroscopy techniques were employed, among them the Z-Scan technique was employed in three distinct configurations (Z-Scan by Single Pulse, by Pulse Train and by Supercontinuum White Light) for determination of absorptions of excited states. Fluorescence lifetimes, radiative decay and internal conversion times, single and triple triplet (fundamental and excited) and quantum efficiencies (fluorescence, internal conversion, and triplet formation) were the parameters determined, and with these parameters, it was possible to understand how changes in the chemical structures (peripheral and metallic ions) modify considerable the optical properties of Porphyrins and Phthalocyanines.
|
Page generated in 0.0467 seconds