• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Órbitas de Sussmann e aplicações / Sussmann orbits and applications

Laguna, Renato Andrielli 26 April 2011 (has links)
Nesta dissertação, estudamos as órbitas de uma família D de campos vetoriais suaves em uma variedade suave M. O objetivo é demonstrar dois teoremas de Sussmann: o primeiro teorema diz que as órbitas são subvariedades integrais de uma certa distribuição \'P IND. D\' de vetores tangentes em M. O segundo teorema dá condições necessárias e suficientes para que \'P IND. D\' seja igual à distribuição gerada pelos campos de D. Como aplicação, estudamos uma caracterização da condição (P) de Nirenberg-Treves para campos vetoriais complexos em \'R POT. 2\' / In this dissertation, we study the orbits of a family D of smooth vector fields on a smooth manifold M. The goal is to demonstrate two theorems of Sussmann: the first theorem says that the orbits are integral submanifolds of a certain distribution \'P IND. D\' of tangent vectors of M. The second theorem gives necessary and sufficient conditions for \'P IND. D\' to be the same as the distribution generated by the vector fields of D: As an application, we study a characterization of the condition (P) of Nirenberg and Treves for complex vector fields on \'R POT. 2\'
2

Órbitas de Sussmann e aplicações / Sussmann orbits and applications

Renato Andrielli Laguna 26 April 2011 (has links)
Nesta dissertação, estudamos as órbitas de uma família D de campos vetoriais suaves em uma variedade suave M. O objetivo é demonstrar dois teoremas de Sussmann: o primeiro teorema diz que as órbitas são subvariedades integrais de uma certa distribuição \'P IND. D\' de vetores tangentes em M. O segundo teorema dá condições necessárias e suficientes para que \'P IND. D\' seja igual à distribuição gerada pelos campos de D. Como aplicação, estudamos uma caracterização da condição (P) de Nirenberg-Treves para campos vetoriais complexos em \'R POT. 2\' / In this dissertation, we study the orbits of a family D of smooth vector fields on a smooth manifold M. The goal is to demonstrate two theorems of Sussmann: the first theorem says that the orbits are integral submanifolds of a certain distribution \'P IND. D\' of tangent vectors of M. The second theorem gives necessary and sufficient conditions for \'P IND. D\' to be the same as the distribution generated by the vector fields of D: As an application, we study a characterization of the condition (P) of Nirenberg and Treves for complex vector fields on \'R POT. 2\'

Page generated in 0.0457 seconds