Spelling suggestions: "subject:"algebras dde grupo"" "subject:"algebras dee grupo""
1 |
Códigos metacíclicos / Metacyclic CodesMoreira, Poliana Luz 26 February 2010 (has links)
Made available in DSpace on 2015-03-26T13:45:32Z (GMT). No. of bitstreams: 1
texto completo.pdf: 489385 bytes, checksum: f564b620e335758735ac20b6205a5111 (MD5)
Previous issue date: 2010-02-26 / Fundação de Amparo a Pesquisa do Estado de Minas Gerais / In this work, we study the eror-correction codes that are ideals in the group algebra FG(M;N;R) over a field F of characteristic 2, where the underlying group is a non-abelian metacyclic of odd order and has the following presentation: G(M;N;R) = ‹a, b : aM = bN = 1, ba = aRb›; onde mdc(M;R) = 1, RN = 1(mod M) e R ≠ 1. We use the theory of representations of the metacyclic groups to find the idempotent generators of the minimal central codes of FG(M;N;R) and prove that these codes are combinatorically equivalent to certain abelian codes whose minimum distances are not the best. However, some of these minimal central codes break down into direct sum of minimal left ideals (left codes), which have minimum distances greater than those abelian codes of comparable length and size. Thus, the study of certain metacyclic minimal (left) codes becomes more interesting. A detailed description of the theory of representations of metacyclic groups and some results on group algebras that support the determination of metacyclic codes are initially presented, as well as some results on cyclic codes. / Neste trabalho, estudamos os códigos corretores de erros que são ideais na álgebra de grupo FG(M;N;R) sobre um corpo F de característica 2, onde o grupo subjacente é metacíclico, não abeliano, de ordem ímpar e possui a seguinte apresentação: G(M;N;R) = ‹a, b : aM = bN = 1, ba = aRb›; onde mdc(M;R) = 1, RN = 1(mod M) e R ≠ 1. Utilizamos a teoria de representações dos grupos metacíclicos para encontrar os idempotentes geradores dos códigos centrais minimais de FG(M;N;R) e provamos que estes códigos são combinatorialmente equivalentes a certos códigos abelianos, cujas distâncias mínimas não são as melhores possíveis. No entanto, alguns destes códigos centrais minimais se decompõem em soma direta de ideais (códigos) minimais à esquerda, que possuem distâncias mínimas maiores que as dos códigos abelianos de comprimento e dimensão comparáveis. Desta maneira, o estudo de certos códigos metacíclicos minimais (à esquerda) se torna mais interessante. Uma descrição detalhada da teoria de representações dos grupos metacíclicos e alguns resultados sobre álgebras de grupo que auxiliam a determinação dos códigos metacíclicos são apresentados preliminarmente, bem como alguns resultados sobre códigos cíclicos.
|
2 |
Álgebras bisseriais especiais / Special biserial algebrasCota, Ana Paula da Silva 27 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:35Z (GMT). No. of bitstreams: 1
texto completo.pdf: 956809 bytes, checksum: ebf2affe7b281f8af02d3a0fdd8101f6 (MD5)
Previous issue date: 2012-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Special biserial algebras are a class of algebras that appear in many contexts. Butler and Ringel [6] made a description of indecomposable modules and irreducible morphisms of algebras string, a subclass of special biserial algebras. We show that special biserial algebras which are not string, have only one module projective-injective indecomposable for each binomial relation. We are present the Auslander-Reiten sequence in which these modules appear. Then we verify that the remainder of Auslander-Reiten quiver of special biserial algebras is obtained as done by Butler and Ringel [6] for string algebras. We conclude this work by applying the above results for the representations of the algebras of finite cyclic groups and algebras of the Klein group and diedral groups over algebraically closed field of characteristic 2. / Álgebras bisseriais especiais formam uma classe de álgebras que aparecem em diferentes contextos. A aplicabilidade destas álgebras que estamos interessados é no estudo de representações de algumas álgebras de grupo não semissimples sobre corpos algebricamente fechados. Para isso, descrevemos, a menos de isomorfismos, seus módulos indecomponíveis e seus morfismos irredutíveis. Tal descrição é feita através de uma bela apresentação combinatória, dada por Butler e Ringel [6], dos módulos indecomponíveis e dos morfismos irredutíveis de um caso particular de
álgebras bisseriais especiais, as álgebras string. No caso geral, de álgebras bisseriais especiais que não são string, mostramos que são acrescentados apenas um módulo projetivo-injetivo indecomponível para cada relação binomial. Apresentamos a sequência de Auslander-Reiten em que estes módulos aparecem e verificamos que, a menos destas sequências, o restante do quiver de Auslander-Reiten é obtido como feito por Butler e Ringel [6] para álgebras string. Para módulos string, apresentamos ainda uma descrição gráfica de uma base dos espaços de morfismos, de acordo com Crawley-Boevey [7]. Finalizamos o trabalho aplicando os resultados acima para obter as representações das álgebras de grupos cíclicos finitos e para as álgebras do grupo de Klein e dos grupos dihedrais sobre corpos algebricamente fechados de característica 2.
|
3 |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo / Lie properties of symmetric elements under oriented involutions in group algebrasCastillo Gomez, John Hermes 29 November 2012 (has links)
Sejam $F$ um corpo de característica diferente de $2$ e $G$ um grupo. A partir da involução clássica, que envia cada elemento em seu inverso, e uma orientação do grupo $G$ é possível definir uma involução clássica orientada na álgebra de grupo $FG$. O objetivo desta tese é estudar propriedades de Lie do conjunto dos elementos simétricos $(FG)^+$ e, em alguns casos, do conjunto dos elementos anti-simétricos $(FG)^-$. Primeiro, abordamos o caso quando $G$ não tem elementos de ordem $2$. Aqui, mostramos que se $(FG)^+$ (ou $(FG)^-$) é Lie nilpotente ou Lie $n$-Engel, então $FG$ também é Lie nilpotente ou Lie $m$-Engel, respectivamente. Depois, consideramos o caso quando $G$ contém uma cópia do grupo quatérnio de ordem $8$. Neste caso, caracterizamos completamente as álgebras de grupo tais que $(FG)^+$ é fortemente Lie nilpotente, Lie nilpotente e Lie $n$-Engel. Como consequência, provamos que o conjunto das unidades simétricas deste tipo de grupos é nilpotente. Estudamos também o caso em que quando $G$ não contém uma cópia do grupo quatérnio de ordem $8$. Em particular, apresentamos um exemplo que mostra que os resultados obtidos em pesquisas anteriores, com a involução clássica, não devem ser esperados ao trabalhar com involuções clássicas orientadas. Não entanto, damos alguns casos especiais de grupos nos quais esses resultados são obtidos. Finalmente, estudamos o índice de Lie nilpotência de $(FG)^+$. Estabelecemos uma condição necessária e suficiente, para que o índice de Lie nilpotência de $(FG)^+$ e a classe de nilpotência das unidades simétricas de uma álgebra de grupo Lie nilpotente sejam o maior possível. Além disso, consideramos a situação em que o grupo $G$ contém uma cópia de $Q_8$. / Let $F$ be a field of characteristic different from $2$ and $G$ a group. From the classical involution, which sends each element in its inverse and an orientation of $G$, it is possible to define an oriented classical involution on the group algebra $FG$. The goal of this thesis is to study Lie properties of the set of symmetric elements $(FG)^+$ and, in some cases, of the set of skew-symmetric elements $(FG)^-$. We first deal with the case when $G$ does not have elements of order $2$. In this situation, we show that if $(FG)^+$ (or $(FG)^-$) is Lie nilpotent or Lie $n$-Engel, then the whole group algebra $FG$ satisfies the same property. Later we consider the case when $G$ contains a copy of the quaternion group of order $8$. In this instance, we give a complete description of the group algebras such that $(FG)^+$ is strongly Lie nilpotent, Lie nilpotent and Lie $n$-Engel. As a consequence, we get that the set of symmetric units of this kind of groups is nilpotent. Furthermore, we study the case when $G$ does not contain a copy of the quaternion group of order $8$. Here, we present an example that shows that the previews results obtained in former works, with the classical involution, may not hold with an oriented classical involution. However, we give some kinds of groups for which those results are achieved. Finally, we study the Lie nilpotency index of $(FG)^+$. It is given a necessary and sufficient condition to the Lie nilpotency index of $(FG)^+$ and the nilpotency class of the symmetric units to be maximal, in a Lie nilpotent group algebra. In addition, we consider the situation when $G$ contains a copy of the quaternion group of order $8$.
|
4 |
Propriedades de Lie de elementos simétricos sob involuções orientadas em álgebras de grupo / Lie properties of symmetric elements under oriented involutions in group algebrasJohn Hermes Castillo Gomez 29 November 2012 (has links)
Sejam $F$ um corpo de característica diferente de $2$ e $G$ um grupo. A partir da involução clássica, que envia cada elemento em seu inverso, e uma orientação do grupo $G$ é possível definir uma involução clássica orientada na álgebra de grupo $FG$. O objetivo desta tese é estudar propriedades de Lie do conjunto dos elementos simétricos $(FG)^+$ e, em alguns casos, do conjunto dos elementos anti-simétricos $(FG)^-$. Primeiro, abordamos o caso quando $G$ não tem elementos de ordem $2$. Aqui, mostramos que se $(FG)^+$ (ou $(FG)^-$) é Lie nilpotente ou Lie $n$-Engel, então $FG$ também é Lie nilpotente ou Lie $m$-Engel, respectivamente. Depois, consideramos o caso quando $G$ contém uma cópia do grupo quatérnio de ordem $8$. Neste caso, caracterizamos completamente as álgebras de grupo tais que $(FG)^+$ é fortemente Lie nilpotente, Lie nilpotente e Lie $n$-Engel. Como consequência, provamos que o conjunto das unidades simétricas deste tipo de grupos é nilpotente. Estudamos também o caso em que quando $G$ não contém uma cópia do grupo quatérnio de ordem $8$. Em particular, apresentamos um exemplo que mostra que os resultados obtidos em pesquisas anteriores, com a involução clássica, não devem ser esperados ao trabalhar com involuções clássicas orientadas. Não entanto, damos alguns casos especiais de grupos nos quais esses resultados são obtidos. Finalmente, estudamos o índice de Lie nilpotência de $(FG)^+$. Estabelecemos uma condição necessária e suficiente, para que o índice de Lie nilpotência de $(FG)^+$ e a classe de nilpotência das unidades simétricas de uma álgebra de grupo Lie nilpotente sejam o maior possível. Além disso, consideramos a situação em que o grupo $G$ contém uma cópia de $Q_8$. / Let $F$ be a field of characteristic different from $2$ and $G$ a group. From the classical involution, which sends each element in its inverse and an orientation of $G$, it is possible to define an oriented classical involution on the group algebra $FG$. The goal of this thesis is to study Lie properties of the set of symmetric elements $(FG)^+$ and, in some cases, of the set of skew-symmetric elements $(FG)^-$. We first deal with the case when $G$ does not have elements of order $2$. In this situation, we show that if $(FG)^+$ (or $(FG)^-$) is Lie nilpotent or Lie $n$-Engel, then the whole group algebra $FG$ satisfies the same property. Later we consider the case when $G$ contains a copy of the quaternion group of order $8$. In this instance, we give a complete description of the group algebras such that $(FG)^+$ is strongly Lie nilpotent, Lie nilpotent and Lie $n$-Engel. As a consequence, we get that the set of symmetric units of this kind of groups is nilpotent. Furthermore, we study the case when $G$ does not contain a copy of the quaternion group of order $8$. Here, we present an example that shows that the previews results obtained in former works, with the classical involution, may not hold with an oriented classical involution. However, we give some kinds of groups for which those results are achieved. Finally, we study the Lie nilpotency index of $(FG)^+$. It is given a necessary and sufficient condition to the Lie nilpotency index of $(FG)^+$ and the nilpotency class of the symmetric units to be maximal, in a Lie nilpotent group algebra. In addition, we consider the situation when $G$ contains a copy of the quaternion group of order $8$.
|
Page generated in 0.0857 seconds