Spelling suggestions: "subject:"équilibre dde charge dynamique"" "subject:"équilibre dee charge dynamique""
1 |
Heterogeneity and locality-aware work stealing for large scale Branch-and-Bound irregular algorithms / Hétérogénéité et localité dans les protocoles distribués de vol de travail pour les algorithmes Branch-and-Bound irréguliers à large échelleVu, Trong-Tuan 12 December 2014 (has links)
Les algorithmes Branch-and-Bound (B&B) font partie des méthodes exactes pour la résolution de problèmes d’optimisation combinatoire. Les calculs induits par un algorithme B&B sont extrêmement couteux surtout lorsque des instances de grande tailles sont considérées. Un algorithme B&B peut être vu comme une exploration implicite d’un espace représenté sous la forme d’un arbre qui a pour spécificité d’être hautement irrégulier. Pour accélérer l’exploration de cet espace, les calculs parallèles et distribués à très large échelle sont souvent utilisés. Cependant, atteindre des performances parallèles optimales est un objectif difficile et jalonné de plusieurs défis, qui découlent essentiellement de deux facteurs: (i) l’irrégularité des calculs inhérents à l’arbre B&B et (ii) l’hétérogénéité inhérente aux environnements de calcul large échelle. Dans cette thèse, nous nous intéressons spécifiquement à la résolution de ces deux défis. Nous nous concentrons sur la conception d’algorithmes distribués pour l’équilibrage de charge afin de garantir qu’aucune entité de calcul n’est surchargée ou sous-utilisée. Nous montrons comment résoudre l’irrégularité des calculs sur différents type d’environnements, et nous comparons les approches proposées par rapport aux approches de références existantes. En particulier, nous proposons un ensemble de protocoles spécifiques à des contextes homogènes, hétérogène en terme de puissance de calcul (muti-coeurs, CPU et GPU), et hétérogènes en terme de qualité des lien réseaux. Nous montrons à chaque fois la supériorité de nos protocoles à travers des études expérimentales extensives et rigoureuses. / Branch and Bound (B&B) algorithms are exact methods used to solve combinatorial optimization problems (COPs). The computation process of B&B is extremely time-intensive when solving large problem instances since the algorithm must explore a very large space which can be viewed as a highly irregular tree. Consequently, B&B algorithms are usually parallelized on large scale distributed computing environments in order to speedup their execution time. Large scale distributed computing environments, such as Grids and Clouds, can provide a huge amount of computing resources so that very large B&B instances can be tackled. However achieving high performance is very challenging mainly because of (i) the irregular characteristics of B&B workload and (ii) the heterogeneity exposed by large scale computing environments. This thesis addresses and deals with the above issues in order to design high performance parallel B&B on large scale heterogeneous computing environments. We focus on dynamic load balancing techniques which are to guarantee that no computing resources are underloaded or overloaded during execution time. We also show how to tackle the irregularity of B&B while running on different computing environments, and consider to compare our proposed solutions with the state-of-the-art algorithms. In particular, we propose several dynamic load balancing algorithms for homogeneous, node-heterogeneous and link-heterogeneous computing platforms. In each context, our approach is shown to perform much better than the state-of-the-art approaches.
|
2 |
Équilibrage de charge dynamique avec un nombre variable de processeurs basé sur des méthodes de partitionnement de grapheVuchener, Clément 07 February 2014 (has links) (PDF)
L'équilibrage de charge est une étape importante conditionnant les performances des applications parallèles. Dans le cas où la charge varie au cours de la simulation, il est important de redistribuer régulièrement la charge entre les différents processeurs. Dans ce contexte, il peut s'avérer pertinent d'adapter le nombre de processeurs au cours d'une simulation afin d'obtenir une meilleure efficacité, ou de continuer l'exécution quand toute la mémoire des ressources courantes est utilisée. Contrairement au cas où le nombre de processeurs ne varie pas, le rééquilibrage dynamique avec un nombre variable de processeurs est un problème peu étudié que nous abordons ici. Cette thèse propose différentes méthodes basées sur le repartitionnement de graphe pour rééquilibrer la charge tout en changeant le nombre de processeurs. Nous appelons ce problème " repartitionnement M × N ". Ces méthodes se décomposent en deux grandes étapes. Dans un premier temps, nous étudions la phase de migration et nous construisons une " bonne " matrice de migration minimisant plusieurs critères objectifs comme le volume total de migration et le nombre total de messages échangés. Puis, dans un second temps, nous utilisons des heuristiques de partitionnement de graphe pour calculer une nouvelle distribution optimisant la migration en s'appuyant sur les résultats de l'étape précédente. En outre, nous proposons un algorithme de partitionnement k-aire direct permettant d'améliorer le partitionnement biaisé. Finalement, nous validons cette thèse par une étude expérimentale en comparant nos méthodes aux partitionneurs actuels.
|
3 |
Modèles de distribution pour la simulation de trafic multi-agent / Distributed models for multi-agent traffic simulationMastio, Matthieu 12 July 2017 (has links)
L'analyse et la prévision du comportement des réseaux de transport sont aujourd'hui des éléments cruciaux pour la mise en place de politiques de gestion territoriale. La simulation informatique du trafic routier est un outil puissant permettant de tester des stratégies de gestion avant de les déployer dans un contexte opérationnel. La simulation du trafic à l'échelle d'un ville requiert cependant une puissance de calcul très importante, dépassant les capacité d'un seul ordinateur.Dans cette thèse, nous étudions des méthodes permettant d'effectuer des simulations de trafic multi-agent à large échelle. Nous proposons des solutions permettant de distribuer l'exécution de telles simulations sur un grand nombre de coe urs de calcul. L'une d'elle distribue directement les agents sur les coeurs disponibles, tandis que la seconde découpe l'environnement sur lequel les agents évoluent. Les méthodes de partitionnement de graphes sont étudiées à cet effet, et nous proposons une procédure de partitionnement spécialement adaptée à la simulation de trafic multi-agent. Un algorithme d'équilibrage de charge dynamique est également développé, afin d'optimiser les performances de la distribution de la simulation microscopique.Les solutions proposées ont été éprouvées sur un réseau réel représentant la zone de Paris-Saclay.Ces solutions sont génériques et peuvent être appliquées sur la plupart des simulateurs existants.Les résultats montrent que la distribution des agents améliore grandement les performances de la simulation macroscopique, tandis que le découpage de l'environnement est plus adapté à la simulation microscopique. Notre algorithme d'équilibrage de charge améliore en outre significativement l'efficacité de la distribution de l'environnement / Nowadays, analysis and prediction of transport network behavior are crucial elements for the implementation of territorial management policies. Computer simulation of road traffic is a powerful tool for testing management strategies before deploying them in an operational context. Simulation of city-wide traffic requires significant computing power exceeding the capacity of a single computer.This thesis studies the methods to perform large-scale multi-agent traffic simulations. We propose solutions allowing the distribution of such simulations on a large amount of computing cores.One of them distributes the agents directly on the available cores, while the second splits the environment on which the agents evolve. Graph partitioning methods are studied for this purpose, and we propose a partitioning procedure specially adapted to the multi-agent traffic simulation. A dynamic load balancing algorithm is also developed to optimize the performance of the microscopic simulation distribution.The proposed solutions have been tested on a real network representing the Paris-Saclay area.These solutions are generic and can be applied to most existing simulators.The results show that the distribution of the agents greatly improves the performance of the macroscopic simulation, whereas the environment distribution is more suited to microscopic simulation. Our load balancing algorithm also significantly improves the efficiency of the environment based distribution
|
Page generated in 0.0697 seconds