• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Ergodic Theorems for Cesàro Convergence of Spherical Averages for Fuchsian Groups: Geometric Coding via Fundamental Domains

Drygajlo, Lars 04 November 2021 (has links)
The thesis is organized as follows: First we state basic ergodic theorems in Section 2 and introduce the notation of Cesàro averages for multiple operators in Section 3. We state a general theorem in Section 3 for groups that can be represented by a finite alphabet and a transition matrix. In the second part we show that finitely generated Fuchsian groups, with certain restrictions to the fundamental domain, admit such a representation. To develop the representation we give an introduction into Möbius transformations (Section 4), hyperbolic geometry (Section 5), the concept of Fuchsian groups and their action in the hyperbolic plane (Section 6) and fundamental domains (Section 7). As hyperbolic geometry calls for visualization we included images at various points to make the definitions and statements more approachable. With those tools at hand we can develop a geometrical coding for Fuchsian groups with respect to their fundamental domain in Section 8. Together with the coding we state in Section 9 the main theorem for Fuchsian groups. The last chapter (Section 10) is devoted to the application of the main theorem to three explicit examples. We apply the developed method to the free group F3, to a fundamental group of a compact manifold with genus two and we show why the main theorem does not hold for the modular group PSL(2, Z).:1 Introduction 2 Ergodic Theorems 2.1 Mean Ergodic Theorems 2.2 Pointwise Ergodic Theorems 2.3 The Limit in Ergodic Theorems 3 Cesàro Averages of Sphere Averages 3.1 Basic Notation 3.2 Cesàro Averages as Powers of an Operator 3.3 Convergence of Cesàro Averages 3.4 Invariance of the Limit 3.5 The Limit of Cesàro Averages 3.6 Ergodic Theorems for Strictly Markovian Groups 4 Möbius Transformations 4.1 Introduction and Properties 4.2 Classes of Möbius Transformations 5 Hyperbolic Geometry 5.1 Hyperbolic Metric 5.2 Upper Half Plane and Poincaré Disc 5.3 Topology 5.4 Geodesics 5.5 Geometry of Möbius Transformations 6 Fuchsian Groups and Hyperbolic Space 6.1 Discrete Groups 6.2 The Group PSL(2, R) 6.3 Fuchsian Group Actions on H 6.4 Fuchsian Group Actions on D 7 Geometry of Fuchsian Groups 7.1 Fundamental Domains 7.2 Dirichlet Domains 7.3 Locally Finite Fundamental Domains 7.3.1 Sides of Locally Finite Fundamental Domains 7.3.2 Side Pairings for Locally Finite Fundamental Domains 7.3.3 Finite Sided Fundamental Domains 7.4 Tessellations of Hyperbolic Space 7.5 Example Fundamental Domains 8 Coding for Fuchsian Groups 8.1 Geometric Alphabet 8.1.1 Alphabet Map 8.2 Transition Matrix 8.2.1 Irreducibility of the Transition Matrix 8.2.2 Strict Irreducibility of the Transition Matrix 9 Ergodic Theorem for Fuchsian Groups 10 Example Constructions 10.1 The Free Group with Three Generators 10.1.1 Transition Matrix 10.2 Example of a Surface Group 10.2.1 Irreducibility of the Transition Matrix 10.2.2 Strict Irreducibility of the Transition Matrix 10.3 Example of PSL(2, Z) 10.3.1 Irreducibility of the Transition Matrix 10.3.2 Strict Irreducibility of the Transition Matrix
2

Transition Matrix Monte Carlo Methods for Density of States Prediction

Haber, René 03 July 2014 (has links) (PDF)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau. Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert. Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System. Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst. Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.
3

Transition Matrix Monte Carlo Methods for Density of States Prediction

Haber, René 20 June 2014 (has links)
Ziel dieser Arbeit ist zunächst die Entwicklung einer Vergleichsgrundlage, auf Basis derer Algorithmen zur Berechnung der Zustandsdichte verglichen werden können. Darauf aufbauend wird ein bestehendes übergangsmatrixbasiertes Verfahren für das großkanonisch Ensemble um ein neues Auswerteverfahren erweitert. Dazu werden numerische Untersuchungen verschiedener Monte-Carlo-Algorithmen zur Berechnung der Zustandsdichte durchgeführt. Das Hauptaugenmerk liegt dabei auf Verfahren, die auf Übergangsmatrizen basieren, sowie auf dem Verfahren von Wang und Landau. Im ersten Teil der Forschungsarbeit wird ein umfassender Überblick über Monte-Carlo-Methoden und Auswerteverfahren zur Bestimmung der Zustandsdichte sowie über verwandte Verfahren gegeben. Außerdem werden verschiedene Methoden zur Berechnung der Zustandsdichte aus Übergangsmatrizen vorgestellt und diskutiert. Im zweiten Teil der Arbeit wird eine neue Vergleichsgrundlage für Algorithmen zur Bestimmung der Zustandsdichte erarbeitet. Dazu wird ein neues Modellsystem entwickelt, an dem verschiedene Parameter frei gewählt werden können und für das die exakte Zustandsdichte sowie die exakte Übergangsmatrix bekannt sind. Anschließend werden zwei weitere Systeme diskutiert für welche zumindest die exakte Zustandsdichte bekannt ist: das Ising Modell und das Lennard-Jones System. Der dritte Teil der Arbeit beschäftigt sich mit numerischen Untersuchungen an einer Auswahl der vorgestellten Verfahren. Auf Basis der entwickelten Vergleichsgrundlage wird der Einfluss verschiedener Parameter auf die Qualität der berechneten Zustandsdichte quantitativ bestimmt. Es wird gezeigt, dass Übergangsmatrizen in Simulationen mit Wang-Landau-Verfahren eine wesentlich bessere Zustandsdichte liefern als das Verfahren selbst. Anschließend werden die gewonnenen Erkenntnisse genutzt um ein neues Verfahren zu entwickeln mit welchem die Zustandsdichte mittels Minimierung der Abweichungen des detaillierten Gleichgewichts aus großen, dünnbesetzten Übergangsmatrizen gewonnen werden kann. Im Anschluss wird ein Lennard-Jones-System im großkanonischen Ensemble untersucht. Es wird gezeigt, dass durch das neue Verfahren Zustandsdichte und Dampfdruckkurve bestimmt werden können, welche qualitativ mit Referenzdaten übereinstimmen.

Page generated in 0.0611 seconds