• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ανάπτυξη συστήματος συστάσεων συνεργατικής διήθησης με χρήση ιεραρχικών αλγορίθμων κατάταξης

Κουνέλη, Μαριάννα 01 February 2013 (has links)
Σκοπός της παρούσας διπλωματικής διατριβής είναι η μελέτη και ανάπτυξη ενός νέου αλγοριθμικού πλαισίου Συνεργατικής Διήθησης(CF) για την παραγωγή συστάσεων. Η μέθοδος που προτείνουμε, βασίζεται στην εκμετάλλευση της ιεραρχικής διάρθρωσης του χώρου αντικειμένων και πατά διαισθητικά στην ιδιότητα της ``Σχεδόν Πλήρης Αναλυσιμότητας'' (NCD) η οποία είναι συνυφασμένη με τη δομή της πλειοψηφίας των ιεραρχικών συστημάτων. Η Συνεργατική Διήθηση αποτελεί ίσως την πιο πετυχημένη οικογένεια τεχνικών για την παραγωγή συστάσεων. Η μεγάλη απήχησή της στο διαδίκτυο αλλά και η ευρεία εφαρμογή της σε σημαντικά εμπορικά περιβάλλοντα, έχουν οδηγήσει στη σημαντική ανάπτυξη της θεωρίας την τελευταία δεκαετία, όπου μια ευρεία ποικιλία αλγορίθμων και μεθόδων έχουν προταθεί. Ωστόσο, παρά την πρωτοφανή τους επιτυχία οι CF μέθοδοι παρουσιάζουν κάποιους σημαντικούς περιορισμούς συμπεριλαμβανομένης της επεκτασιμότητας και της αραιότητας των δεδομένων. Τα προβλήματα αυτά επιδρούν αρνητικά στην ποιότητα των παραγόμενων συστάσεων και διακυβεύουν την εφαρμοσιμότητα πολλών CF αλγορίθμων σε ρεαλιστικά σενάρια. Χτίζοντας πάνω στη διαίσθηση πίσω από τον αλγόριθμο NCDawareRank - μίας γενικής μεθόδου υπολογισμού διανυσμάτων κατάταξης ιεραρχικά δομημένων γράφων - και της σχετικής με αυτόν έννοιας της NCD εγγύτητας, προβαίνουμε σε μία μοντελοποίηση του συστήματος με τρόπο που φωτίζει τα ενδημικά του χαρακτηριστικά και προτείνουμε έναν νέο αλγοριθμικό πλαίσιο συστάσεων, τον Αλγόριθμο 1. Στο επίκεντρο της προσέγγισής μας είναι η προσπάθεια να συνδυάσουμε τις άμεσες με τις NCD, ``γειτονιές'' των αντικειμένων ώστε να πετύχουμε μεγαλύτερης ακρίβειας χαρακτηρισμό των πραγματικών συσχετισμών μεταξύ των στοιχείων του χώρου αντικειμένων, με σκοπό την βελτίωση της ποιότητας των συστάσεων αλλά και την αντιμετώπιση της εγγενούς αραιότητας και των προβλημάτων που αυτή συνεπάγεται. Για να αξιολογήσουμε την απόδοση της μεθόδου μας υλοποιούμε και εφαρμόζουμε τον Αλγόριθμο 1 στο κλασικό movie recommendation πρόβλημα και παραθέτουμε μια σειρά από πειράματα χρησιμοποιώντας τo MovieLens Dataset. Τα πειράματά μας δείχνουν πως ο Αλγόριθμος 1 με την εκμετάλλευση της ιδέας της NCD εγγύτητας καταφέρνει να πετύχει λίστες συστάσεων υψηλότερης ποιότητας σε σύγκριση με τις άλλες state-of-the-art μεθόδους που έχουν προταθεί στη βιβλιογραφία, σε ευρέως χρησιμοποιούμενες μετρικές (micro- και macro-DOA), αποδεικνύοντας την ίδια στιγμή πως είναι λιγότερο επιρρεπής στα προβλήματα που σχετίζονται με την αραιότητα και έχοντας παράλληλα ανταγωνιστικό προφίλ πολυπλοκότητας και απαιτήσεις αποθήκευσης. / The purpose of this master's thesis is to study and develop a new algorithmic framework for collaborative filtering (CF) to generate recommendations. The method we propose is based on the exploitation of the hierarchical structure of the item space and intuitively ``stands'' on the property of Near Complete Decomposability (NCD) which is inherent in the structure of the majority of hierarchical systems. Collaborative Filtering is one of the most successful families of recommendations methods. The great impact of CF on Web applications, and its wide deployment in important commercial environments, have led to the significant development of the theory, with a wide variety of algorithms and methods being proposed. However, despite their unprecedented success, CF methods present some important limitations including scalability and data sparsity. These problems have a negative impact of the quality of the recommendations and jeopardize the applicability of many CF algorithms in realistic scenarios. Building on the intuition behind the NCDawareRank algorithm and its related concept of NCD proximity, we model our system in a way that illuminates its endemic characteristics and we propose a new algorithmic framework for recommendations, called Algorithm 1. We focus on combining the direct with the NCD `` neighborhoods'' of items to achieve better characterization of the inter-item relations, in order to improve the quality of recommendations and alleviate sparsity related problems. To evaluate the merits of our method, we implement and apply Algorithm 1 in the classic movie recommendation problem, running a number of experiments on the standard MovieLens dataset. Our experiments show that Algorithm 1 manages to create recommendation lists with higher quality compared with other state-of-the-art methods proposed in the literature, in widely used metrics (micro- and macro- DOA), demonstrating at the same time that it is less prone to low density related problems being at the same time very efficient in both complexity and storage requirements.

Page generated in 0.0225 seconds