• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Έκφραση και μελέτη μεταλλαγμένων μορφών της εξωκυτταρικής περιοχής της α7 υπομονάδας του νικοτινικού υποδοχέα της ακετυλοχολίνης

Παπαδάκη, Ειρήνη 08 May 2012 (has links)
-- / The nicotinic acetylcholine receptors (nAChRs) are transmembrane proteins, composed of five subunits and belong to the superfamily of ligand gated ion channels The nAChRs are distinguished according to their topological and pharmacological characteristics in muscle and nervous type. Both the muscle and the nervous type are involved in the execution of many physiological functions (eg, nerve impulse transmission) but respectively in the pathogenesis of many diseases (eg Myasthenia Gravis,Parkinson's,Alzheimer's).This makes imperative the need to design drugs that target specific to each type of receptor. A prerequisite for achieving this objective is to study the structure of the extracellular regions of the receptor, as it is known that the specific areas are recognised by the cholinergic ligands and the abnormal antibodies. The α7 subunit of the human nicotinic acetylcholine receptor, can be used as a model for this study as It is expressed as a homopentamer. Wanting therefore to avoid the large and hydrophobic transmembrane regions of the receptor that would hinder the achievement of the objective, we focused on the extracellular domain (ECD) of the receptor .So, according to the above, a recombinant form of the extracellular region of the receptor was constructed and expressed previously in our laboratory (Zouridakis et al., 2009). The recombinant protein was (α7-mut10-myc-His), expressed in soluble form, in sufficient concentration and showed about three times greater affinity for I125-a-bgtx compared to the wild type (α7-ΔCDwt). Furthermore, studies of dynamic light scattering and electron microscopy confirmed the formation of homopentamer molecules. Moreover, the deglycosylated form of the protein displayed all these enhanced features, allowing the entry of crystallization experiments with both the glycosylated and the deglycosylated form. In order to further improve the specific mutant, new recombinant forms of the extracellular region of the α7 subunit of the nAChR were constructed. The recombinant forms were expressed with different expression tags in their N-or C-terminal in order to improve the folding of the molecule. The FLAG-α7-mut10-myc-His was produced in greater quantity and Ηts deglycosylated form differs significantly, indicating probably a more homogeneous protein population. Also, analysis of the molecule bygel filtration showed the predominant formation of a homopentamer molecule and the absence of high molecular weight aggregates. This protein, has enhanced features compared to the α7-mut10-myc-His and thus can proceed to crystallization trials. The second part of the study refers to the construction concateremers of the α7ECD. Σwo peptide linkers varying in their length were used. The mutant which carried the smaller linker (AGS)8, showed greater solubility compared to the more extended one (AGS)11.

Page generated in 0.0297 seconds