• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Διερεύνηση των μηχανισμών αστοχίας επικαλύψεων δομικών στοιχείων θερμικών στροβιλομηχανών υπό συνθήκες θερμομηχανικής φόρτισης με τη χρήση μη-καταστροφικών δοκιμών

Βουγιουκλάκης, Ιωάννης 03 March 2009 (has links)
Τo πρώτο κεφάλαιο, το οποίο είναι και το εισαγωγικό, παρουσιάζει με συντομία στον ενδιαφερόμενο αναγνώστη τα χαρακτηριστικά, τις ιδιότητες και τις δυνατότητες των βασικών «συστατικών» αυτής της έρευνας, που δεν είναι άλλα παρά τα υπερκράματα και οι επικαλύψεις αυτών. Στη συνέχεια, στο επόμενο κεφάλαιο, παρουσιάζεται το βασικό πειραματικό εργαλείο αυτής της μελέτης, δηλαδή τα πειράματα θερμομηχανικής κόπωσης καθώς και η συγκεκριμένη πειραματική διάταξη που πρόκειται να χρησιμοποιηθεί. Το κεφάλαιο αυτό θεωρείται ιδιαίτερα σημαντικό καθώς ασχολείται με τις βασικές παραμέτρους που ελέγχουν τα πειράματα αυτά, καθώς και με τους μηχανισμούς αστοχίας που αναμένεται να ενεργοποιούνται κατά τη διάρκειά τους. Το τρίτο κεφάλαιο μπορεί να θεωρηθεί και αυτό καθαρά εισαγωγικό, όπως και το πρώτο, καθώς ασχολείται με τις βασικές αρχές και ιδιότητες της μεθόδου της Ακουστικής Εκπομπής. Το κεφάλαιο αυτό κλείνει με μια περιγραφή του συστήματος της Ακουστικής Εκπομπής που χρησιμοποιήθηκε στη μελέτη αυτή. Τα τρία αυτά κεφάλαια, είναι ανεξάρτητα μεταξύ τους και κρίθηκε ότι ήταν απαραίτητο να είναι όσο πιο δυνατό πλήρη καθώς αναφέρονται σε υλικά, ιδιότητες και μεθόδους αρκετά «νέες» και μη ευρέως γνωστές. Η εργασία συνεχίζει στο τέταρτο κεφάλαιο με την παρουσίαση της πρώτης πειραματικής σειράς που ασχολείται με ισόθερμα εφελκυστικά πειράματα υλικών στροβιλοκινητήρων, στη θερμοκρασιακή περιοχή λειτουργίας τους. Με την παράλληλη εφαρμογή της μεθόδου της Ακουστικής Εκπομπής γίνεται προσπάθεια ανίχνευσης και τελικά ανάλυσης των ενεργοποιημένων μηχανισμών αστοχίας καθώς και εντοπισμού των βασικών παραμέτρων απόδοσης των υλικών. Το αναλυτικό μέρος της εργασίας ολοκληρώνεται στο πέμπτο κεφάλαιο, όπου και παρουσιάζονται δύο ανεξάρτητες σειρές πειραμάτων θερμομηχανικής κόπωσης. Στα πειράματα αυτά, προηγείται μια προσπάθεια κατανόησης και ανίχνευσης των μηχανισμών αστοχίας. Στη συνέχεια με την αξιοποίηση των καταγεγραμμένων σημάτων Ακουστικής Εκπομπής επιχειρείται συσχέτιση αυτών των μηχανισμών βλάβης – αστοχίας με ομάδες σημάτων ΑΕ καθώς και η ποσοτικοποίηση της εξέλιξης της βλάβης και του βαθμού της υποβάθμισης του υλικού με την εξέταση της υπογραφής των σημάτων αυτών. Η επεξεργασία και παρουσίαση των αποτελεσμάτων αυτών επιχειρήθηκε να γίνει με τέτοιο τρόπο, που να διασφαλίζει την ανεξαρτησία των παρατηρήσεων και συμπερασμάτων για κάθε πειραματική σειρά αλλά συγχρόνως να εξασφαλίζει και μια συνέχεια των παρατηρήσεων και των εφαρμογών. Η εργασία ολοκληρώνεται στο έκτο κεφάλαιο, με μια συζήτηση πάνω στην ανάλυση αυτών των αποτελεσμάτων, όπου διατυπώνονται οι καινοτομίες της έρευνας καθώς και οι προοπτικές εφαρμογής της σε πιο γενικευμένη και επίσημη βάση και το τί η επιστημονική κοινότητα καθώς και τα στελέχη των σχετικών βιομηχανιών θα μπορούσαν να αναμένουν από αυτή. / -
2

Σχεδιασμός και έλεγχος προωθητηρίου συστήματος ελικοπτέρου με στροβιλοκινητήρα

Σκάντζικας, Κώστας 13 January 2015 (has links)
Η παρούσα διπλωματική έχει ως αντικείμενο την μελέτη των συστημάτων προώθησης και την εξέταση των δυνατοτήτων χρησιμοποίησης νέων μορφών προωθητηρίων. Συγκεκριμένα θεωρώντας ότι μέχρι σήμερα το κύριο σύστημα προώθησης UAV είναι οι DC κινητήρες σε συνδυασμό με έλικες μελετάται η δυνατότητα χρήσης Jet κινητήρων για την παραγωγή της απαιτούμενης ώσης που χρειάζεται ένα UAV κατά την αιώρηση. Οι στροβιλοκινητήρες έχουν την δυνατότητα παραγωγής σταθερής ώσης και χρησιμοποιούνται σχεδόν αποκλειστικά στα μεγάλης κλίμακας ιπτάμενα οχήματα. Υπάρχουν διάφοροι τύποι στροβιλοκινητήρων στην αγορά, οι οποίοι όμως βασίζονται στις ίδιες αρχές λειτουργίας. Κατά την εργασία μελετήθηκε ο μοντελιστικός Jet κινητήρας JetCat P20. Έγινε προσπάθεια μοντελοποίησης του εν λόγω κινητήρα λαμβάνοντας υπόψη όλα τα χαρακτηριστικά του. Το άγνωστο έως τώρα σύστημα μοντελοποιήθηκε και έγινε μελέτη της δυναμικής του. Οι Jet κινητήρες λόγω της φυσικών νόμων που τους διέπουν παρουσιάζουν σχετικά αργές αποκρίσεις. Οι σταθερές χρόνου αυτών των κινητήρων καθιστούν την δυνατότητα χρήσης τους σε UAV εφαρμογές αρκετά δύσκολη. Με την χρήση του JetCat P20 σε μια πραγματική εφαρμογή ελέγχου της γωνιάς ενός οδηγούμενου εκκρεμούς αναζητήθηκαν τα όρια και οι δυνατότητες ελέγχου αυτού του προωθητικού συστήματος. Οι Jet κινητήρες τελικά, όπως ο JetCat P20 έχουν αρκετά καλές δυνατότητες παραγωγής συγκεκριμένου επιπέδου ώσης, επομένως και ρύθμισης της γωνίας του εκκρεμούς, ωστόσο οι χρόνοι απόκρισής του είναι αρκετά μεγάλοι για τα δεδομένα UAV εφαρμογών, χωρίς να υπάρχουν πολλά περιθώρια βελτίωσης μέσω κλασσικού έλεγχου. / This thesis object is the study of propulsion systems and the examination of using new systems for propulsion. Especially, considering that until now the main propulsion system for UAV's are DC motors in combination with propellers we are examining the possibility of using Jet engine to generate the required thrust needed a UAV in hover. The turbines have the ability to produce constant thrust and are used almost exclusively in large-scale flight vehicles. There are different types of turbines on the market, but they are based on the same principles of operation. During this thesis, we are experimenting with the Jet engine JetCat P20. The Jet Engine system was modeled and we examined its dynamic.The Jet engines ,because of the physical laws governing them, have relatively slow time responses. The time constants of these motors makes it difficult to use in UAV applications. We have used the JetCat P20 in a real application ,where we tried to control the angle of a driven pendulum.The Jet engines finally, like JetCat P20 have pretty good production capabilities thrust level, and thus adjusting the angle of the pendulum, but their response time is large enough for the UAV applications, without much scope for improvement through classical control.
3

Μελέτη των συνθηκών ψύξης πτερυγίων στροβίλου μέσω έγχυσης ψυχρού αέρα στην ζώνη ανακυκλοφορίας της πεταλοειδούς δίνης στην κόγχη σύνδεσης του πτερυγίου με τα πλαϊνά τοιχώματα του στροβίλου / Film cooling effectiveness in the blade-endwall junction corner with injection assisted by the recirculating vortex flow

Μηλιδόνης, Κύπρος 25 May 2015 (has links)
Η θερμοδυναμική ανάλυση του κύκλου Brayton υποδεικνύει ότι η θερμική απόδοση και το ειδικό έργο εξόδου ενός αεριοστρόβιλου μπορούν να βελτιωθούν με την αύξηση της θερμοκρασίας εισόδου των αεριών της καύσης στον στρόβιλο. Επιπλέον, οι αυξημένες θερμοκρασίες εισόδου στον στρόβιλο συνοδεύονται και από μείωση της κατανάλωσης καυσίμου, ενώ σε αεροπορικές εφαρμογές οι υψηλότερες θερμοκρασίες έχουν ώς αποτέλεσμα την αύξηση της ώσης του κινητήρα. Δυστυχώς όμως, οι υψηλές αυτές θερμοκρασίες θέτουν σε κίνδυνο την ακεραιότητα των εξαρτημάτων του στροβίλου υψηλής πίεσης και ειδικότερα τα πτερύγια (blades) του στροβίλου και το δάπεδο (endwall) στο οποίο τα πτερύγια αυτά είναι προσκολλημένα. Στους μοντέρνους κινητήρες, η θερμοκρασία εισόδου στον στρόβιλο μπορεί να φτάνει και στα επίπεδα των 1900Κ, θερμοκρασία η οποία υπερβαίνει το σημείο τήξης των υλικών από τα οποία είναι κατασκευασμένα τα εξαρτήματα του στροβίλου. Αυτό έχει ως αποτέλεσμα τα εξαρτήματα του στροβίλου να λειτουργούν σε πολύ σκληρότερο περιβάλλον απ' ότι στο παρελθόν. Η διατήρηση επαρκούς διάρκειας ζωής στις υψηλές αυτές θερμοκρασίες απαιτεί την ανάπτυξη νέων υλικών κατασκευής και αποτελεσματικών μεθόδων ψύξης για τα εξαρτήματα του στροβίλου. Για την αντιμετώπιση και την αποφυγή της αστοχίας των πτερυγίων (blades) και των δάπεδων (endwall) των πτερυγικών διακένων στους στροβίλους, η μέθοδος του "film cooling" έχει ενσωματωθεί στον σχεδιασμό τους. Κατά την διεργασία της ψύξης των εξαρτημάτων με την μέθοδο αυτή, ψυχρός αέρας αφαιμάσσεται από το στάδιο του συμπιεστή, διοχετεύεται μέσω εσωτερικών θαλάμων του κινητήρα στα εξαρτήματα του στροβίλου και εγχέεται μέσω διακριτών οπών στα τοιχώματα των πτερυγίων και των δαπεδικών τοιχωμάτων. Μετά την έξοδο του από τις οπές, ο ψυκτικός αέρας σχηματίζει ένα λεπτό, προστατευτικό στρώμα-φιλμ μεταξύ των θερμών αερίων της καύσης και της μεταλλικής επιφάνειας των εξαρτημάτων. Μια εκ των κρίσιμων περιοχών οι οποίες υποβάλλονται σε αυξημένους ρυθμούς μετάδοσης θερμότητας είναι και η περιοχή γύρω από την περιφέρεια σύνδεσης των πτερυγίων (blades) με τα δάπεδα (endwalls) του στροβίλου. Η περιοχή αυτή κυριαρχείται από την παρουσία ισχυρών τρισδιάστατων δευτερογενών ροών (γνωστές και ώς junction flows) οι οποίες προκαλούν αύξηση των τοπικών ρυθμών μετάδοσης θερμότητας στην περιοχή της τάξης του 350%. Επιπλέον, οι ροές αυτές, εμποδίζουν την διείσδυση ψυκτικού ρευστού στην προβληματική περιοχή εκτοπίζοντας το μακριά από την επιφάνεια του δαπέδου πριν αυτό προλάβει να παράσχει ικανοποιητική ψύξη. Αντικείμενο της παρούσας διδακτορικής διατριβής, είναι η μελέτη, ανάπτυξη και δοκιμή (τόσο πειραματικά όσο και υπολογιστικά) μιας πρωτότυπης γεωμετρίας ψύξης (με την μέθοδο του film cooling), για την αποτελεσματική αντιμετώπιση του προβλήματος της υπερθέρμανσης της περιοχής σύνδεσης του πτερυγίου – δαπέδου κυρίως γύρω από το επίπεδο του χείλους προσβολής. Το κύριο χαρακτηριστικό της πρωτότυπης μεθόδου έγχυσης είναι ότι το ψυκτικό εκχέεται κατά τέτοιο τρόπο έτσι ώστε οι ροϊκές γραμμές του ψυκτικού να υποβοηθούνται από την περιστροφική κίνηση των τοπικών τρισδιάστατων ροών. Η πολυπλοκότητα του προβλήματος ψύξης της συγκεκριμένης περιοχής προκύπτει από δύο στοιχεία. Πρώτον, όπως αναφέρθηκε και προηγουμένως, η ροή στην περιοχή σύνδεσης κοντά στο τοίχωμα χαρακτηρίζεται από πολύπλοκη τρισδιάστατη δομή. Δεύτερον, το πρόβλημα χαρακτηρίζεται από τρείς θερμοκρασίες: την θερμοκρασία της κύριας ροής, την θερμοκρασία του τοιχώματος και την θερμοκρασία του ψυκτικού αέρα. Για την πλήρη διερεύνηση των χαρακτηριστικών της προτεινόμενης μεθόδου ψύξης η εργασία περιλαμβάνει τόσο πειραματικό όσο και υπολογιστικό σκέλος: Υπολογιστικό Σκέλος (Computational part): Ο επιτυχής σχεδιασμός μιας πιθανής γεωμετρίας ψύξης για την συγκεκριμένη περιοχή του δαπέδου (endwall) απαιτεί την γνώση και κατανόηση της τοπικής ροής μέσα στην οποία το τζετ του ψυκτικού πρόκειται να εισέλθει. Επιπλέον, είναι σημαντική η κατανόηση της αλληλεπίδρασης που αναμένεται μεταξύ του ψυκτικού αέρα με την τοπική τρισδιάστατη ροή. Για τον σκοπό αυτό, χρησιμοποιήθηκε η μέθοδος της υπολογιστικής ρευστοδυναμικής (Computational Fluid Dynamics) για την πρόβλεψη του σχετικού τρισδιάστατου βασικού πεδίου ροής στην περιοχή σύνδεσης του πτερυγίου (blade) - δαπέδου (endwall). Έγιναν προσομοιώσεις τόσο για την βασική γεωμετρία απουσία έγχυσης (οι οποίες χρησιμοποιήθηκαν ως πεδίο αναφοράς) όσο και προσομοιώσεις παρουσία της πρωτότυπης έγχυσης οι οποίες αφορούσαν την επίδραση διαφόρων παραμέτρων στην αποτελεσματικότητα της ψύξης της προβληματικής περιοχής. Στις προσομοιώσεις υιοθετήθηκε η εξής θερμοκρασιακή κατανομή: Θερμό δάπεδο (endwall) - Θερμότερη κύρια ροή (mainstream) - Ψυχρός αέρας έγχυσης, η οποία είναι και αντίστοιχη με αυτήν που εμφανίζεται σε πραγματικές εφαρμογές. Τα αποτελέσματα των προσομοιώσεων βοήθησαν στην κατανόηση του ροϊκού πεδίου στην περιοχή σύνδεσης τόσο ποιοτικά όσο και ποσοτικά σε ότι αφορά τα σχετικά μεγέθη των ροϊκών δομών και των αεροδυναμικών χαρακτηριστικών τις περιοχής. Αυτό είχε ώς αποτέλεσμα τον αποτελεσματικό σχεδιασμό της πρωτότυπης γεωμετρίας έγχυσης. Επιπλέον, οι υπολογιστικές προβλέψεις ήταν πολύ βοηθητικές προς την κατεύθυνση κατανόησης και ερμηνείας των πειραματικών αποτελεσμάτων, αφού παρείχαν την δυνατότητα συσχέτισης της προκύπτουσας κατανομής της θερμοκρασίας στο δάπεδο (endwall) με τις τοπικές τρισδιάστατες ροές. Πειραματικό Σκέλος (Experimental part): Για την πειραματική διερεύνηση της αποτελεσματικότητας της προτεινόμενης μεθόδου ψύξης, χρησιμοποιήθηκε μια νέα τεχνική η οποία αναπτύχθηκε ως μέρος της παρούσας εργασίας, υιοθετώντας θερμοκρασιακή κατανομή αντίστροφη από αυτήν που χρησιμοποιήθηκε για τις υπολογιστικές προβλέψεις, π.χ. Ψυχρή κύρια ροή (mainstream) - Θερμό πλαϊνό τοίχωμα (endwall) - Θερμότερος αέρας έγχυσης. Χρησιμοποιώντας την μέθοδο αυτή και με την χρήση υπέρυθρης θερμογραφίας (infrared thermography), ποσοτικοποιείται η αποτελεσματικότητα στην ψύξη του πλαϊνού τοιχώματος και προσδιορίζεται η περιοχή στην οποία η ψύξη είναι αποτελεσματική. Επιπλέον της ποιοτικής και ποσοτικής αποτίμησης της αποτελεσματικότητας της ψύξης, ήταν αναγκαίες αεροδυναμικές μετρήσεις για τον καθορισμό του αεροδυναμικού κόστους της προτεινόμενης μεθόδου ψύξης. Οι μετρήσεις αυτές, δίνουν μια ένδειξη του κατά πόσον η μέθοδος επηρεάζει την μεγέθυνση και ένταση των δευτερογενών ροών (π.χ. δίνη διακένου (passage vortex)) στην περιοχή κατάντη της ζώνης αλληλεπίδρασης του ψυκτικού τζετ με την τοπική τρισδιάστατη ροή. / The thermodynamic analysis of the Brayton cycle designates that the thermal efficiency and the specific work output of a Gas Turbine can be improved by increasing the Turbine Inlet Temperatures. Furthermore, increment of the turbine inlet temperatures also results into lower fuel consumption rates, while, if the gas turbine is meant for propulsion purposes, increment of the turbine inlet temperatures also results into increased engine thrust. Unfortunately, these high gas temperatures jeopardize the integrity of the high pressure turbine components and more particular, the turbine blades and the endwall on which the blades are attached. In modern turbines, the turbine inlet temperature may reach the level of 1900K, exceeding by far the melting temperature of the metal walls. As a result, the turbine components operate at much harsher environments than in the past. Maintaining adequate life in these high temperatures requires the development of new materials and manufacturing processes, as well as efficient cooling methods for the components of the turbine. In order to address and avoid the failure of the blades and endwall of a turbine cascade, the method of "film cooling" has been incorporated as part of the components design process. In the latter method, air is bled from the compressor stage, passed through internal chambers of the engine to the turbine components and is injected through discrete holes in the walls of the blades and the endwall, forming a thin protective layer film between the hot combustion gases and the metal surfaces of the parts. A critical region that is subjected into increased thermal stresses is the area around the leading edge - endwall juncture, which is inherently dominated by the presence of strong three dimensional secondary flows (also known as juncture flows) responsible for the increment of the local heat transfer rates to the order of 350%. Moreover, these flows, prevent the penetration of the fluid in the problematic area, displacing the coolant mass flux away from the surface of the endwall before providing adequate cooling. The subject of the current thesis, is the design, development and testing (both experimental and computational) of a prototype cooling scheme (with the method of film cooling), in order to effectively address the endwall overheating problem around the leading edge - endwall juncture, especially around the stagnation plane area. The main feature of the novel injection method is that the coolant air is ejected in such a way that the cooling effectiveness in the area is assisted by the rotational sense of local three-dimensional flows. The complexity of film cooling for the problematic area arises from two facts. Firstly, as mentioned previously the flow around the leading edge junction is characterized by complex three dimensional flows. Secondly, the problem is characterized by three temperatures: the temperature of the main flow, the endwall temperature and the temperature of the coolant air. In order to fully investigate the features and characteristics of the proposed cooling method, the work of the current thesis includes both, an experimental and a computational part: Computational part: The successful design of a possible cooling scheme for the particular region of the endwall requires the knowledge and understanding of local flow in which the coolant jet is to be entrained. Furthermore, it is important to understand the expected interaction between the coolant air and the local three-dimensional flow. For this purpose, the method of Computational Fluid Dynamics was employed for predicting the relevant three-dimensional flow field around the blade-endwall junction area. Simulations were made for both, the basic geometry in the absence of any coolant injection (which were used as a reference point) and simulations during the employment of the proposed coolant injection method which concerned the effect of various parameters on the cooling efficiency of the problematic area. For the simulations, the following temperature step was adopted: Warm endwall - Warmer main flow (mainstream) - Cold air injection, which is similar to that seen in real applications. The CFD predictions were very helpful towards understanding the relevant flow field in the junction area, both qualitatively and quantitatively in terms of the relative magnitudes of the flow structures and the aerodynamic characteristics of the flow in the region. Experimental part: For the experimental investigation regarding the effectiveness of the proposed cooling method, a new experimental technique was employed which was developed as part of the current thesis. In the latter technique, a reversed temperature step is adopted (when compared to the relevant temperature step adopted for the numerical simulations), e.g. Cold main flow (mainstream) - Warm endwall - Warmer air injection. Along with the use of infrared thermography, the endwall film cooling effectiveness is quantified and the region that the injection is effective is determined. In addition to the qualitative and quantitative evaluation of the cooling effectiveness, extensive aerodynamic measurements were necessary in order to evaluate the aerodynamic costs of the proposed cooling method. These measurements provide an indication of whether the cooling process affects the growth and intensity of secondary flows (e.g. passage vortex) in the region downstream of the coolant jet-local three-dimensional flow interaction.

Page generated in 0.0246 seconds