• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Mechanical Loading on the Local Myofibrogenic Differentiation of Aortic Valve Interstitial Cells

Watt, Derek Randall 25 July 2008 (has links)
Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for myofibrogenic differentiation and valve pathogenesis. In this thesis, a bioreactor was developed to study the effect of physiological loading on myofibrogenic differentiation of valve interstitial cells. Cyclic loading of native porcine aortic valve leaflets ex vivo resulted in increased α-SMA expression, predominantly in the fibrosa and spongiosa (similar to sclerotic leaflets). Cofilin, an actin-binding protein, was also upregulated by loading, suggesting it plays a role in mechanically-induced myofibrogenesis. Similarly, loading of a tissue engineered aortic valve leaflet model resulted in increased α-SMA transcript and protein expression. These data support an integral role for mechanical stimuli in myofibrogenic differentiation and sclerosis in the aortic valve.
2

The Effects of Mechanical Loading on the Local Myofibrogenic Differentiation of Aortic Valve Interstitial Cells

Watt, Derek Randall 25 July 2008 (has links)
Calcific aortic valve sclerosis is characterized by focal lesions in the valve leaflet. These lesions are rich in myofibroblasts that express α-SMA and cause fibrosis. Lesions tend to occur in regions of the leaflet that are subjected to large bending loads, suggesting a mechanobiological basis for myofibrogenic differentiation and valve pathogenesis. In this thesis, a bioreactor was developed to study the effect of physiological loading on myofibrogenic differentiation of valve interstitial cells. Cyclic loading of native porcine aortic valve leaflets ex vivo resulted in increased α-SMA expression, predominantly in the fibrosa and spongiosa (similar to sclerotic leaflets). Cofilin, an actin-binding protein, was also upregulated by loading, suggesting it plays a role in mechanically-induced myofibrogenesis. Similarly, loading of a tissue engineered aortic valve leaflet model resulted in increased α-SMA transcript and protein expression. These data support an integral role for mechanical stimuli in myofibrogenic differentiation and sclerosis in the aortic valve.

Page generated in 0.0583 seconds