• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Neurotoxicity and Degenerative Disorders: Studies of β-N-methylamino-L-alanine (BMAA)-induced Effects in SH-SY5Y Cells using Immunohistochemistry (IHC)

Robbani, Elin January 2017 (has links)
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA), a non-protein amino acid, first attracted attention in correlation to reports of high incidence of the unusual neurological disease amyotrophic lateral sclerosis/Parkinsonism-dementia (ALS/PDC) among the people of Guam in the South Pacific Ocean. Experimental studies have revealed that BMAA causes neuronal cell death. The neurotoxin is suggested to act via excitotoxicity through interaction with glutamatergic receptors. More importantly, BMAA is suggested to misincorporate in the synthesis of proteins, and contribute to protein misfolding and/or deleterious aggregation, which are hallmarks of several neurodegenerative disorders. A selective uptake of BMAA in the rat neonatal hippocampus can interfere with brain development, causing learning and memory impairments in adult rats. The aim of the present study was to investigate the effects of BMAA in human neuroblastoma SH-SY5Y cells. These cells were exposed to BMAA (10 μM, 50 μM, 100 μM or 500 μM) for 72 hours, and the expression of five selected proteins, including heat shock protein-27 (HSP-27), lysosomal associated membrane protein-1 (LAMP-1), CCAAT-enhancer-binding protein homologous protein (CHOP), Golgi associated plant pathogenesis related protein-2 (GLIPR-2), and glucose regulated protein-78 (GRP-78). They were carried out with immunohistochemistry (IHC). Results revealed an increased expression of all selected proteins, which indicates an uptake and shows the effects of BMAA in the cell cultures. Taken together, BMAA caused cellular stress, including endoplasmic reticulum (ER) stress that is correlated with HSP-27, LAMP-1, CHOP, GLIPR-2, and GRP-78. Further studies are needed in order to support the results. The experiments require being repeated using the same biomarkers as well as a combination of them with other biomarkers to elucidate the effects of BMAA.

Page generated in 0.0844 seconds