• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Μελέτη απεικονιστικών πρωτοκόλλων (SPECT) εισάγοντας κίνηση σε υπολογιστικά ανθρωπόμορφα μοντέλα, μέσω ρεαλιστικών προσομοιώσεων Monte Carlo : δημιουργία βάσης δεδομένων

Λιάκου, Παρασκευή 05 1900 (has links)
Στην Πυρηνική Ιατρική, κατά τη διαδικασία ιατρικής απεικόνισης, η κίνηση των οργάνων λόγω της αναπνευστικής λειτουργίας και της σύσπασης του μυοκαρδίου αλλά και των υπόλοιπων κινούμενων οργάνων, δημιουργεί αλλοιώσεις στη διαγνωστική πληροφορία. Η σημαντικότερη αλλοίωση παρατηρείται στον καθορισμό των ορίων συγκεκριμένων οργάνων. Η μελέτη και η ποσοτικοποίηση του φαινομένου καθίσταται αναγκαία στα ευρέως χρησιμοποιούμενα κλινικά πρωτόκολλα πυρηνικής απεικόνισης (SPECT, PET). Το πακέτο προσομοιώσεων Gate είναι ένα πολύ δυνατό εργαλείο που παρέχει τη δυνατότητα ρεαλιστικής μοντελοποίησης συστημάτων πυρηνικής ιατρικής και χρήσης διακριτοποιημένων ομοιωμάτων. Με τη βοήθεια αυτού του εργαλείου και κάνοντας χρήση διακριτοποιημένων ομοιωμάτων XCAT και ITIS μπορούν να προσομοιωθούν ρεαλιστικά κλινικές εξετάσεις που επηρεάζονται από την κίνηση οργάνων. Τα XCAT και ITIS είναι ρεαλιστικά και ευέλικτα μοντέλα ανθρώπινης ανατομίας και φυσιολογίας. Τα XCAT παρέχουν την επιπλέον δυνατότητα της εισαγωγής κίνησης. Αυτή η μελέτη είναι σημαντική, καθώς πολλές ομάδες της επιστημονικής κοινότητας ασχολούνται με την παραγωγή αλγορίθμων διόρθωσης της κίνησης των πνευμόνων και της καρδιάς, κάνοντας χρήση προσομοιώσεων Monte Carlo, με σκοπό τη βελτίωση της απεικόνισης σημαντικών ιατρικών πληροφοριών που αλλοιώνονται λόγω της κίνησης. Οι προσομοιώσεις κλινικών εξετάσεων με το GATE, εισάγοντας ρεαλιστικά ανθρώπινα ομοιώματα, είναι μια μεθοδολογία αιχμής η οποία ανοίγει το δρόμο στη βελτιστοποίηση των διαγνωστικών και θεραπευτικών προσεγγίσεων, παρέχοντας ένα ισχυρό εργαλείο για το σχεδιασμό κλινικών πρωτοκόλλων, την ανάπτυξη διορθωτικών αλγορίθμων και τη μοντελοποίηση παραμέτρων όπως η κίνηση του σώματος εξαιτίας της λειτουργίας της καρδιάς καθώς και του αναπνευστικού συστήματος. / In nuclear medicine, during medical imaging procedures, organs' motion creates artifacts and loss in the diagnostic information, due to respiratory motion and myocardial contraction. The most significant challenge is to define the limits of specific organs and quantify the blurring caused by this motion. The study and quantification of this phenomenon is necessary for clinical protocols used in nuclear imaging (SPECT, PET), so as to achieve accurate diagnosis. GATE is a powerful Monte Carlo simulation toolkit, which enables the realistic modeling of a nuclear imaging system, using voxelized phantoms as input. Using this tool and computational anthropomorphic phantoms such as XCAT and ITIS phantom series can simulate realistically clinical tests. XCAT and ITIS are realistic and flexible models of human anatomy and physiology. XCAT provide the additional capability of importing motion. In the present thesis the XCAT and the ITIS anthropomorphic computational phantoms are used in a series of simulations modeling several clinical cases. Several groups in the scientific community are dealing with the development of motion correction algorithms in order to decrease the blurring in specific organs of interest and to increase the diagnostic value of nuclear imaging. Monte Carlo techniques combined with realistic human models can provide the ground truth for such applications. This is a cutting edge methodology that paves the way for optimization of diagnostic and therapeutic approaches, providing a powerful tool for the design of clinical protocols, developing algorithms and modeling parameters such as body movement due to pulmonary and heart motion.
2

Τεχνικές μέτρησης χρόνων μαγνητικής αποκατάστασης (Τ1, Τ2, Τ2*) με χρήση ομοιωμάτων προσομοίωσης ανθρωπίνων ιστών

Βενέτη, Σοφία 01 July 2014 (has links)
Η κλασική Απεικόνιση του Μαγνητικού Συντονισμού (ΑΜΣ) βασίζεται στο φαινόμενο του πυρηνικού μαγνητικού συντονισμού όπου η κάθε λέξη ξεχωριστά μας βοηθάει να κατανοήσουμε ποια είναι η προέλευση αυτού του φαινομένου. Συγκεκριμένα, το μετρούμενο σήμα προέρχεται από τους πυρήνες των ατόμων της ύλης, η αλληλεπίδραση μεταξύ των οποίων είναι μαγνητική και το τελικό σήμα εκφρασμένο σε μορφή φασμάτων ή εικόνων λαμβάνεται χρησιμοποιώντας το φαινόμενο του πυρηνικού μαγνητικού συντονισμού. Στην κατηγορία της ποσοτικής ΑΜΣ (πΑΜΣ), όμως, μετράμε άμεσα τις ποσοτικές παραμέτρους από τις οποίες εξαρτώνται τα τελικά σήματα όπως χρόνους μαγνητικής αποκατάστασης, μοριακή διάχυση, pH, μικρο-ιξώδες κτλ. Η ρύθμιση και η βαθμονόμηση των παραμέτρων του τελικού μετρητικού συστήματος (σύστημα ΑΜΣ) παίζουν βασικό ρόλο στα τελικά αποτελέσματα των μετρήσεών μας. Για το λόγο αυτό είναι απαραίτητη η χρήση ειδικών ομοιωμάτων για τη βαθμονόμηση του μετρητικού συστήματος καθώς και για την αξιολόγηση και βελτιστοποίηση των μετρητικών μεθόδων. Τα ομοιώματα ελέγχου θα πρέπει να έχουν κάποια συγκεκριμένα βασικά χαρακτηριστικά, για να προσομοιάζουν όσο το δυνατόν καλύτερα τις μαγνητικά μετρούμενες παραμέτρους σε σχέση πάντα με εκείνες των ανθρωπίνων ιστών. Τέτοιες παράμετροι είναι κυρίως οι χρόνοι μαγνητικής αποκατάστασης (Τ1, Τ2, Τ2*) και η μοριακή διάχυση. Στα υλικά των ομοιωμάτων θα πρέπει να υπάρχει επιπλέον η δυνατότητα ανεξάρτητου ελέγχου των χρόνων μαγνητικής αποκατάστασης Τ1 και Τ2. Επίσης, θα πρέπει τα υλικά αυτά να έχουν φυσική και χημική σταθερότητα στο χρόνο και τέλος να παρασκευάζονται εύκολα και να είναι οικονομικά. Στην παρούσα εργασία παρασκευάστηκαν ειδικά ομοιώματα ενός πολυσακχαρίτη, της αγαρόζης, με πρόσμιξη μιας παραμαγνητικής ουσίας, του γαδολινίου (Gd-DTPA), σε 20 διαφορετικούς συνδυασμούς συγκεντρώσεων μεταξύ τους. Με βάση αυτά τα ομοιώματα μετρήσαμε τους χρόνους μαγνητικής αποκατάστασης Τ1, Τ2, Τ2* για οκτώ επαναλήψεις σε διάστημα τεσσάρων μηνών. Διαπιστώσαμε ότι η πιο αποτελεσματική ακολουθία για τη μέτρηση της Τ2 είναι σε μια ακολουθία πολλαπλών συμμετρικά επαναλαμβανόμενων Spin Echo (32 echo) με αρχική τιμή ΤΕ = 20ms. Με την χρήση της ακολουθίας αυτής καλύπτεται το μεγαλύτερο φάσμα μετρήσεων τιμών Τ2 για τους μαλακούς βιολογικούς ιστούς και επίσης τηρείται το 6 επιτρεπτό όριο του συντελεστή μεταβλητότητας για αυτόν τον τύπο των μετρήσεων (CV=±5%). Για τη μέτρηση της Τ1 εφαρμόσαμε δύο μεθόδους (Variable Flip Angle-VFA, Variable Time Inversion-VTI). Η πιο αποτελεσματική μέθοδος αποδείχθηκε η VTI. Η VFA υστερούσε στις μετρήσεις λόγω της αδυναμίας προσαρμογής των δεδομένων στην μαθηματική συνάρτηση περιγραφής των σημάτων λήψης Y(FA) = f (FA). Επιπλέον, διαπιστώσαμε ότι το παραμαγνητικό ιόν του γαδολινίου επηρεάζει την μέτρηση της Τ1 ανεξάρτητα από το μοριακό τύπο ή το είδος της χειλικής χημικής ένωσης στην οποία ανήκει. Τέλος, διαπιστώσαμε ότι σε όλες τις μετρήσεις η μεγαλύτερη ανομοιογένεια του τοπικού μαγνητικού πεδίου παρουσιάζεται στα πυκνά διαλύματα σε αγαρόζη και γαδολίνιο κυρίως λόγω της παραμαγνητικής ιδιότητας του γαδολινίου, η οποία επηρεάζει το τοπικό μαγνητικό πεδίο της μέτρησης. Μεγάλο συντελεστή μεταβλητότητας στις μετρήσεις της ανομοιογένειας του τοπικού μαγνητικού πεδίου παρουσιάζουν τα αραιά κολλοειδή διαλύματα και το νερό, διότι επηρεάζονται ευκολότερα από τις εξωτερικές επιδράσεις της μέτρησης (π.χ. θερμοκρασία) εξαιτίας της ασθενούς σύνδεσης μεταξύ των μορίων του υλικού τους. / The typical Magnetic Resonance Imaging (MRI) is based in the phenomenon of the nuclear magnetic resonance where each individual word, helps us understand its origin. Specifically, the measured signal is generated by the nucleus of the matter's atoms. The interaction of the latter is magnetic and the final signal is detected in the form of spectrum or images through the phenomenon of nuclear magnetic resonance. Nevertheless, in the field of quantitative MRI, we can measure quantitative parameters like magnetic relaxation time, molecular diffusion, micro-viscosity etc., on which the final signals depend. The adjustment and calibration of the parameters of the final metering systems (system MRI) are crucial for the final results. Therefore, it is essential to use special phantoms for the calibration of the metering system as well as for the valuation and optimization of the metering processes. The control phantoms need to have specific characteristics in order to simulate as much as possible the magnetically measured parameters with respect to the ones of the human tissues. Such parameters are mainly the magnetic relaxation times (T1, T2, T2*) and the molecular diffusion. The phantoms should also provide the option of individual testing of the magnetic relaxation times T1 and T2. Moreover, these materials should have the same physical and chemical stability in time and their production needs to be financially effective. In this paper, special agarose phantoms were produced, by mixing gadolinium, a paramagnetic substance, in 20 different concentrations. Based on these phantoms we measured 8 times the magnetic relaxation times Τ1, Τ2, Τ2* within a period of 4 months. We noted that the most effective sequence for measuring T2 is by symmetrically spin echo sequence with the initial time having the value of 20ms. Using this method, the widest range of T2 values is covered with regards to soft tissues. Additionally, the variation coefficient permissible figures for such measurements is respected (CV=±5%). In order to measure T1 we used two methods, Variable Flip Angle-VFA, Variable Time Inversion-VTI. The most effective one, was proven to be the VTI one. VFA method was presenting delays in the measurements due to the inability to adjust the data in the function of signal reception description Y(FA) = f (FA). Moreover, we discovered that the paramagnetic ion of gadolinium is affecting the measurement of T1 regardless the molecular type or the type of chemical ligand that this belongs to. Finally, we noted that throughout the experiments, the highest inhomogeneity of the local magnetic field is found in the dense solutions of agarose and gadolinium mainly due to the paramagnetic properties of gadolinium which affects the local magnetic field of the measurement. High variability factor of inhomogeneity of the local magnetic field demonstrated the dilute gels and water because of the poor connection between the molecules of their material.
3

Διασφάλιση ποιότητας στη στερεοτακτική ακτινοθεραπεία και δοσιμετρία μικρών πεδίων / Quality assurance in stereotactic radiotherapy and small fields dosimetry

Δροσάτου, Καλλιόπη 02 March 2015 (has links)
Η στερεοτακτική μέθοδος ακτινοθεραπείας και ακτινοχειρουργικής είναι μια νεότερη μέθοδος της ογκολογίας, που αποδεδειγμένα υπερέχει έναντι της συμβατικής μεθόδου ακτινοβόλησης, ιδιαίτερα όταν συνδυάζεται με τελευταίες τεχνικές ακτινοβόλησης, όπως το IMRT, ArcTherapy and VMAT. Χαρακτηρίζεται δε από ακτινοβόληση με ιδιαίτερα υψηλές δόσεις, συνήθως πολύ μικρών όγκων, της τάξεως του εκατοστού. Εξαιτίας αυτών, είναι επιτακτική η ανάγκη για μέγιστη ακρίβεια και αποφυγή λαθών, καθώς δεν υπάρχουν περιθώρια σφάλματος! Κάθε ακτινοθεραπευτικό κέντρο οφείλει λοιπόν να ακολουθεί ένα ολοκληρωμένο και ιδιαίτερα αυστηρό πρόγραμμα ποιοτικού ελέγχου, θεσπίζοντας μια σειρά ελέγχων σε ημερήσια, εβδομαδιαία, μηνιαία και ετήσια βάση. Μέθοδος: Επειδή δεν υπάρχει ένα εντεταλμένο πρωτόκολλο Ποιοτικού Ελέγχου Στερεοτακτικής Ακτινοθεραπείας με Γραμμικό Επιταχυντή, αρχικά στην εργασία αυτή έγινε μια βιβλιογραφική μελέτη για να βρεθεί το state of the art αυτού του ζητήματος και να εντοπιστούν, σε πρώτη φάση, οι επιμέρους ποιοτικοί έλεγχοι που προτείνονται για τα διάφορα μέρη της στερεοτακτικής ακτινοβόλησης (εξοπλισμός και διαδικασία). Κατόπιν, προσδιορίστηκε μια συνολική, βέλτιστη και κατάλληλη για την πλειοψηφία των ακτινοθεραπευτικών κέντρων, λίστα ελέγχων για τη Διασφάλιση της Ποιότητας στην Στερεοτακτική Ακτινοθεραπεία. Αποτελέσματα: Ο Πίνακας των Ελέγχων που προέκυψε είναι – ως όφειλε – σύμφωνος με τα επιμέρους διεθνή πρωτόκολλα της Ευρώπης και Αμερικής. Βάσει αυτού προτείνεται ένα ολοκληρωμένο Πρόγραμμα Διασφάλισης Ποιότητας για Ακτινοθεραπευτικά Κέντρα που εφαρμόζουν στερεοταξία, το οποίο μπορεί να διαμορφωθεί από κάθε ακτινοθεραπευτικό κέντρο, βάσει των ιδιαιτεροτήτων αυτού, αλλά και να προσαρμοστεί σε μελλοντικές τεχνολογικές αλλαγές. Η εφαρμογή τέτοιων ελέγχων, τέλος, διερευνήθηκε στο ιδιωτικό θεραπευτήριο ΜΕΤΡΟΠΟΛΙΤΑΝ του Φαλήρου. Συμπεράσματα: Το πρόγραμμα ελέγχων που προτείνεται, αν και είναι σύμφωνο με τα επιμέρους διεθνή πρωτόκολλα ποιοτικού ελέγχου για τον εξοπλισμό και τη διαδικασία της ακτινοθεραπείας, πρέπει περαιτέρω να διερευνηθεί επί της κλινικής πράξης από ακτινοθεραπευτικά κέντρα, προκειμένου να βρεθούν τυχόν αδυναμίες και ελλείψεις και τελικώς να αποτελέσει τη βάση ενός μελλοντικού Πρωτόκολλου Διασφάλισης Ποιότητας Στερεοτακτικής Ακτινοθεραπείας με Γραμμικό Επιταχυντή, εγκεκριμένου από τους αρμόδιους διεθνείς φορείς και οργανισμούς. / Stereotactic Radiation Therapy (SRT) and Stereotactic RadioSurgery (SRS) are new advanced oncologic treatment modalities, which proved superior to the conventional method of irradiation, particularly when combined with latest irradiation techniques, such as IMRT, ArcTherapy and VMAT. They apply very high doses, to – usually – very small volumes (centimeters range). These characteristics mean great need for maximum accuracy and avoid mistakes, as there is no room for error! Therefore, every radiotherapy center must follow a very strict and comprehensive quality control program, adopting a series of checks on a daily, weekly, monthly and yearly basis. Method: Because there is no specific Quality Control Protocol for Stereotactic Radiotherapy using Linear Accelerator, the first part of this work was a literature study to find the state of the art of this issue and find, at first, the proposed quality controls for each part of stereotactic irradiation (equipment and process). Afterwards an overall checklist for Quality Assurance in Stereotactic Radiotherapy was defined, which was assessed as optimal and suitable for most radiotherapy centers. Results: The resulted table of checks is - as it should - in line with the different international protocols in Europe and America. Based on this, a comprehensive Quality Assurance Program for radiotherapy centers applying stereotaxis, is proposed. This may be configured and modified by each radiotherapy center, according to its specificities, and also adapt to future technological advances. Finally we look into the implementation of such controls, at the METROPOLITAN private hospital of Faliro. Conclusions: Although the recommended Control Program is consistent with the different international quality control protocols for the equipment and process of radiotherapy, the individual radiotherapy centers should further investigate this program when in clinical use, in order to find any deficiency or weakness. The ultimate goal was to create the basis for the future Quality Assurance Protocol in Stereotactic Radiotherapy with Linac, which should be approved by the competent international comities and organizations.
4

Θεωρητική ανάλυση και πειραματική μελέτη ενός πρότυπου μικροκυματικού συστήματος για θεραπευτικές εφαρμογές υπερθερμίας

Γουζούασης, Ιωάννης 17 September 2008 (has links)
Η υπερθερμία αποτελεί μια επικουρική μέθοδο θεραπείας του καρκίνου και η βιοϊατρική έρευνα τις τελευταίες δεκαετίες, με σκοπό την εκμετάλλευση και την ανάδειξη των ιδιοτήτων της μεθόδου, στοχεύει στην εφαρμογή της στην κλινική πράξη. Μία προσπάθεια με παρόμοιο σκοπό γίνεται τα τελευταία χρόνια στο Εργαστήριο Μικροκυμάτων και Οπτικών Ινών (ΕΜΟΙ) της σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) του Εθνικού Μετσόβιου Πολυτεχνείου, όπου έχει σχεδιαστεί και κατασκευαστεί ένα σύστημα υπερθερμίας. Το προτεινόμενο σύστημα ενσωματώθηκε σε ένα τρισδιάστατο σύστημα παθητικής μικροκυματικής ραδιομετρικής απεικόνισης (ΜiRaIS) για διαγνωστικές εφαρμογές εγκεφάλου, το οποίο μελετήθηκε και κατασκευάστηκε στα πλαίσια διδακτορικής διατριβής στο ίδιο εργαστήριο της σχολής ΗΜΜΥ. Στην παρούσα διπλωματική εργασία γίνεται η θεωρητική και πειραματική μελέτη του προτεινόμενου συστήματος της υπερθερμίας. Η αρχή λειτουργίας του είναι όμοια με αυτή του MiRaIS και βασίζεται στη χρήση μια ελλειψοειδούς αγώγιμης κοιλότητας για εστίαση της ακτινοβολίας επιλεκτικά στους ιστούς που χρήζουν θεραπείας. Ο ανακλαστήρας για εστίαση, που κατασκευάστηκε και χρησιμοποιήθηκε στην πειραματική διαδικασία, βελτιώνει την εργονομία του συστήματος, διατηρώντας παράλληλα της ιδιότητες εστίασης του πρωτότυπου ελλειψοειδούς. Στα πλαίσια της παρούσας διπλωματικής εργασίας πραγματοποιήθηκε θεωρητική μελέτη και μοντελοποίηση της διάταξης με σκοπό τη βελτίωση των ιδιοτήτων εστίασής της, καθώς και πειραματικές μετρήσεις του συνολικού συστήματος υπερθερμίας-μικροκυματικής ραδιομετρίας. Στη θεωρητική μελέτη, με χρήση του λογισμικού xFDTD που βασίζεται στη μέθοδο των πεπερασμένων διαφορών στο πεδίο του χρόνου, ερευνώνται δυο μέθοδοι για τη βελτίωση των ιδιοτήτων εστίασης του συστήματος (βάθος διείσδυσης της ακτινοβολίας, χωρική διακριτική ικανότητα) με τη χρήση διηλεκτρικών υλικών. Τα υλικά αυτά τοποθετούνται στο εσωτερικό του ελλειψοειδούς καθώς και γύρω από το μοντέλο κεφαλιού ως στρώματα προσαρμογής για την επίτευξη βηματικής αλλαγής της διηλεκτρικής σταθεράς στη διεπιφάνεια αέρα-μοντέλο ανθρώπινου κεφαλιού. Στην πρώτη προσέγγιση, το εσωτερικό του ελλειψοειδούς ανακλαστήρα γεμίζει με διηλεκτρικό υλικό χαμηλών απωλειών, με τα αποτελέσματα να δείχνουν σημαντική βελτίωση της χωρικής διακριτικής ικανότητας του συστήματος. Στη δεύτερη προσέγγιση του προβλήματος, χρησιμοποιείται ένα ημισφαίριο από διηλεκτρικό γύρω από το μοντέλο κεφαλιού, με τα αποτελέσματα να δείχνουν την αντίστοιχη βελτίωση της χωρικής διακριτικής ικανότητας και παράλληλα σημαντική μείωση των ανεπιθύμητων περιοχών εστίασης της ενέργειας. Η πειραματική διάταξη τοποθετήθηκε σε ανηχοϊκό θάλαμο, όπου και πραγματοποιήθηκαν όλες οι μετρήσεις. Παράλληλα με τα πειράματα υπερθερμίας, μελετήθηκε η δυνατότητα εφαρμογής της μεθόδου της μικροκυματικής ραδιομετρίας με τη γεωμετρία του προτεινόμενου συστήματος. Η μέθοδος της μικροκυματικής ραδιομετρίας θα μπορούσε να παρέχει τον έλεγχο της θερμοκρασίας της ακτινοβολούμενης περιοχής κατά τη διάρκεια των συνεδριών της υπερθερμίας. Στις πειραματικές διαδικασίες που ακολουθήθηκαν, χρησιμοποιήθηκαν ομοιώματα νερού, τα οποία στη φάση της υπερθερμίας υπέδειξαν τις περιοχές εστίασης της ενέργειας για τη συχνότητα ακτινοβολίας, ενώ στη φάση της μικροκυματικής ραδιομετρίας βοήθησαν στη μελέτη της θερμοκρασιακής διακριτικής ικανότητας του συστήματος. Επίσης, διενεργήθηκαν μετρήσεις με στρώματα προσαρμογής από διηλεκτρικά υλικά, τα οποία τοποθετούνταν γύρω από το αντικείμενο ενδιαφέροντος, για την πληρέστερη κατανόηση της επίδρασης των υλικών αυτών στις ιδιότητες εστίασης του συστήματος και για την επιβεβαίωση των αντίστοιχων θεωρητικών αποτελεσμάτων. / The application of hyperthermia process has been widely used in clinical research and efforts are being made for its implementation in clinical practice, as many researchers have used this method as an adjunct treatment procedure for cancer. During the past two decades, a great deal of research has been carried out, with the aim of developing effective techniques for hyperthermia treatment, primarily using RF, microwave, and ultrasound energy. A similar effort is carried out in the Laboratory of Microwaves and Fiber Optics (MFOL), School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), where a proposed hyperthermia system has been designed and constructed. A system for deep brain hyperthermia treatment, designed to also provide passive measurements of temperature and/or conductivity variations inside the human body, is presented in this paper. The proposed system comprises both therapeutic and diagnostic modules, operating in a totally contactless way, based on the use of an ellipsoidal beamformer to achieve focusing on the areas under treatment and monitoring. The radiometry monitoring module, the Three Dimensional Passive Microwave Radiometry Imaging System (MiRaIS), has been studied, designed and constructed in the framework of a PhD thesis in the same laboratory of MFOL. In the present thesis, the proposed system is theoretically and experimentally studied. The operation principal is based on the use of an ellipsoidal conductive wall cavity for focusing the emitted radiation on the tissues that should accept treatment. The ellipsoidal cavity, which was constructed and used in the experimentation procedure, is newly developed and improves the system’s ergonomy retaining at the same time the focusing properties of the prototype system. In the framework of the present study, theoretical modelling and experimentation of the proposed system was carried out in order to examine and improve its focusing attributes. In the theoretical study, two methods for the improvement of the system’s focusing properties (e.g. penetration depth of the electromagnetic field, spatial sensitivity) using dielectric materials are tested with the use of a commercially available software tool, xFDTD (x-Finite Difference Time Domain). The materials are placed inside the ellipsoidal or used as matching layers around the head model for the achievement of a stepped change of the refraction index on the air-human head model interface. In the first approach, the ellipsoidal volume is filled with a low loss dielectric material in order to improve the system’s spatial sensitivity. In the second approach, a hemi-sphere also filled with a dielectric material is placed around the human head model and the results revealed the improvement of the system’s spatial sensitivity and the reduction of the undesirable auxiliary energy-absorbing areas. The experiments were performed inside an anechoic chamber providing maximum accuracy by avoiding any external interference. Along with the hyperthermia experiments, the implementation of the microwave radiometry process was also tested with the proposed system. Microwave radiometry could provide the temperature monitoring of the radiated area during the hyperthermia sessions. In the experimental procedures water phantoms were used, which during hyperthermia indicated the energy-absorbing areas at the irradiation frequency, and during microwave radiometry revealed the system’s temperature sensitivity. Also, measurements were conducted using dielectric matching layers, placed around the medium of interest, in order to fully understand the effect of those materials on the system’s focusing properties as well as to confirm the respective theoretical results. Taking into consideration the present study and the advantage of the non invasive character of the proposed brain hyperthermia system, it is concluded that further research is required in order to explore its potentials at becoming a part of the standard treatment protocol of brain malignancy in the future.
5

Ανάπτυξη μη επεμβατικών συστημάτων υπερθερμίας για θεραπευτικές εφαρμογές εγκεφάλου

Γουζούασης, Ιωάννης 20 October 2010 (has links)
Η υπερθερμία αποτελεί μια επικουρική μέθοδο θεραπείας του καρκίνου και η βιοϊατρική έρευνα τις τελευταίες δεκαετίες, με σκοπό την εκμετάλλευση και την ανάδειξη των ιδιοτήτων της μεθόδου, στοχεύει στην εφαρμογή της στην κλινική πράξη. Μια προσπάθεια με παρόμοιο σκοπό γίνεται τα τελευταία χρόνια στο Εργαστήριο Μικροκυμάτων και Οπτικών Ινών (ΕΜΟΙ) της σχολής Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) του Εθνικού Μετσόβιου Πολυτεχνείου, όπου έχει σχεδιαστεί και κατασκευαστεί ένα μικροκυματικό σύστημα υπερθερμίας. Το προτεινόμενο σύστημα ενσωματώθηκε σε ένα τρισδιάστατο σύστημα παθητικής μικροκυματικής ραδιομετρικής απεικόνισης (ΜiRaIS), το οποίο παρέχει τη δυνατότητα παρακολούθησης των μεταβολών της θερμοκρασίας και της αγωγιμότητας της υπό εξέταση περιοχής σε πραγματικό χρόνο και μελετήθηκε και κατασκευάστηκε στα πλαίσια παλαιότερης διδακτορικής διατριβής στο ίδιο εργαστήριο της σχολής ΗΜΜΥ. Στην παρούσα διδακτορική διατριβή γίνεται η θεωρητική και πειραματική μελέτη του προτεινόμενου συστήματος υπερθερμίας. Η αρχή λειτουργίας του συστήματος είναι όμοια με εκείνη του MiRaIS και βασίζεται στη χρήση μιας ελλειψοειδούς αγώγιμης κοιλότητας για εστίαση της ακτινοβολίας επιλεκτικά στους ιστούς που χρήζουν θεραπείας. Ο ανακλαστήρας για εστίαση που κατασκευάστηκε και χρησιμοποιήθηκε στην πειραματική διαδικασία, βελτιώνει την εργονομία του συστήματος, διατηρώντας παράλληλα της ιδιότητες εστίασης του πρωτότυπου ελλειψοειδούς. Στα πλαίσια της παρούσας διατριβής πραγματοποιήθηκε αρχικά η θεωρητική μελέτη και μοντελοποίηση της διάταξης με σκοπό την εξακρίβωση των ιδιοτήτων εστίασης του συστήματος και στη συνέχεια επιχειρήθηκε η βελτίωση των ιδιοτήτων αυτών με χρήση διατάξεων διηελκτρικών υλικών, καθώς και πειραματικές μετρήσεις του συνολικού συστήματος υπερθερμίας-μικροκυματικής ραδιομετρίας. Η θεωρητική ηλεκτρομαγνητική μελέτη του συστήματος έγινε με τη χρήση ενός εμπορικά διαθέσιμου υπολογιστικού πακέτου προσομοίωσης (XFdtd, Remcom Inc.), το οποίο χρησιμοποιεί τη μέθοδο των πεπερασμένων διαφορών στο πεδίο του χρόνου για την επίλυση ηλεκτρομαγνητικών προβλημάτων. Ερευνώνται τρεις διατάξεις διηλεκτρικών υλικών με σκοπό τη βελτίωση των ιδιοτήτων εστίασης του συστήματος, οι οποίες επικεντρώνονται στη μελέτη του βάθους διείσδυσης της ακτινοβολίας και της χωρικής διακριτικής ικανότητας. Τα υλικά τοποθετούνται είτε στο εσωτερικό του ελλειψοειδούς είτε γύρω από το μοντέλο κεφαλιού ως στρώματα προσαρμογής, με σκοπό την επίτευξη βηματικής αλλαγής της διηλεκτρικής σταθεράς στη διεπιφάνεια αέρα-μοντέλο ανθρώπινου κεφαλιού. Τα αποτελέσματα καταδεικνύουν τα πλεονεκτήματα από τη χρήση των διηλεκτρικών υλικών, καθώς παρουσιάζεται βελτίωση και στις δυο παραμέτρους των ιδιοτήτων εστίασης, ανάλογα με τη διάταξη που χρησιμοποιείται, τη θέση του μοντέλου κεφαλιού στο εσωτερικό του συστήματος και τη συχνότητα λειτουργίας. Για τη διενέργεια των πειραμάτων, η πειραματική διάταξη τοποθετήθηκε σε ανηχοϊκό θάλαμο, ο οποίος εξασφαλίζει την απομόνωσή της από τον περιβάλλοντα χώρο. Στις πειραματικές διαδικασίες που ακολουθήθηκαν, χρησιμοποιήθηκαν ομοιώματα, τα οποία στη φάση της υπερθερμίας υπέδειξαν τις περιοχές εστίασης της ενέργειας για την εκάστοτε συχνότητα ακτινοβολίας, ενώ στη φάση της μικροκυματικής ραδιομετρίας βοήθησαν στη μελέτη της θερμοκρασιακής διακριτικής ικανότητας του συστήματος. Η μέθοδος της μικροκυματικής ραδιομετρίας χρησιμοποιήθηκε για την παρακολούθηση των μεταβολών της θερμοκρασίας της ακτινοβολούμενης περιοχής κατά τη διάρκεια των συνεδριών της υπερθερμίας. Επίσης, κατά τη διάρκεια των πειραμάτων πραγματοποιήθηκαν μετρήσεις με στρώματα προσαρμογής από διηλεκτρικά υλικά, τα οποία τοποθετήθηκαν γύρω από το αντικείμενο ενδιαφέροντος και βοήθησαν στην πληρέστερη κατανόηση της επίδρασης της παρουσίας τους στις ιδιότητες εστίασης του συστήματος και στην επιβεβαίωση των αντίστοιχων θεωρητικών αποτελεσμάτων. / The application of hyperthermia process has been widely used in clinical research and efforts are being made for its implementation in clinical practice, as many researchers have used this method as an adjunct treatment procedure for cancer. During the past two decades, a great deal of research has been carried out, with the aim of developing effective techniques for hyperthermia treatment, primarily using RF, microwave and ultrasound energy. A similar effort is carried out in the Laboratory of Microwaves and Fiber Optics (MFOL), School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), where a proposed hyperthermia system has been designed and constructed. A system for deep brain hyperthermia treatment, designed to also provide passive measurements of temperature and/or conductivity variations inside the human body, is presented in the present PhD thesis. The proposed system comprises both therapeutic and diagnostic modules, operating in a totally contactless way, based on the use of an ellipsoidal beamformer to achieve focusing on the areas under treatment and monitoring. The radiometry monitoring module, the Three Dimensional Passive Microwave Radiometry Imaging System (MiRaIS), has been studied, designed and constructed in the framework of a previous PhD thesis in the same laboratory of MFOL. In the present thesis, the proposed system is theoretically and experimentally studied. The operation principal is based on the use of an ellipsoidal conductive wall cavity for focusing the emitted radiation on the tissues that should accept treatment. The ellipsoidal cavity, which was constructed and used in the experimentation procedure, is newly developed and improves the system’s ergonomics retaining at the same time the focusing properties of the prototype system. In the framework of the present work, theoretical modeling and experimentation of the proposed system is carried out in order to examine and improve its focusing attributes. In the theoretical study, three setups are investigated for the improvement of the system’s focusing properties (e.g. penetration depth of the electromagnetic field, spatial sensitivity) using dielectric materials. The research is carried out with the use of a commercially available software tool, XFdtd (Remcom Inc.). The materials are placed inside the ellipsoidal or used as matching layers around the head model for the achievement of a stepped change of the refraction index on the air-human head model interface. The results revealed the possible advantages of using matching dielectric materials, as improvement on the focusing properties of the system is clearly observed, depending on the setup used, the position of the head model inside the system and the operating frequency. The experiments were performed inside an anechoic chamber providing maximum accuracy by avoiding all possible EMC/EMI issues. Along with the hyperthermia experiments, the implementation of the microwave radiometry process was also tested with the proposed system. Microwave radiometry could provide the temperature monitoring of the radiated area during the hyperthermia sessions. In the experimental procedures water phantoms were used, which during hyperthermia indicated the energy absorbing areas at the irradiation frequency, while during microwave radiometry revealed the system’s temperature sensitivity. Also, measurements were conducted using dielectric matching layers, placed around the medium of interest, in order to fully understand the effect of those materials on the system’s focusing properties as well as to confirm the respective theoretical results. Taking into consideration the present study and the advantage of the non invasive character of the proposed brain hyperthermia system, it is concluded that further research is required in order to explore its potentials at becoming a part of the standard treatment protocol of brain malignancy in the future.

Page generated in 0.0307 seconds