Spelling suggestions: "subject:"συσχέτιση""
1 |
Γραμμικά μοντέλα παλινδρόμησης και μοντέλα συσχέτισηςΑθανασοπούλου, Ανδριάνα 12 June 2015 (has links)
Τα μοντέλα παλινδρόμησης χρησιμοποιούνται ευρέως σήμερα στη διοίκηση των επιχειρήσεων, στην οικονομία, στη μηχανική, στην υγεία, τη βιολογία και τις κοινωνικές επιστήμες. Στη στατιστική, η ανάλυση παλινδρόμησης είναι μία στατιστική διαδικασία για την εκτίμηση των σχέσεων μεταξύ διαφόρων μεταβλητών. Περιέχει πολλές τεχνικές για τη μοντελοποίηση και την ανάλυση των μεταβλητών αυτών, ενώ επικεντρώνεται συνήθως στη σχέση μεταξύ μιας εξαρτημένης και μιας ή περισσοτέρων ανεξαρτήτων μεταβλητών.
Η παρούσα εργασία επιδιώκει να παρουσιάσει το θεωρητικό πλαίσιο της ανάλυσης παλινδρόμησης, ξεκινώντας από το απλό μοντέλο και επεκτείνοντας την ανάλυση στο πολλαπλό, για να καταλήξει και να επικεντρωθεί στα μοντέλα συσχέτισης και συγκεκριμένα στους συντελεστές συσχέτισης και στους ελέγχους υποθέσεων αυτών. / Correlation models are widely used in social sciences biology and engineering. In this dissertation we present the theoretical framework of regression analysis and correlation models and finally we present results in real problems and applications.
|
2 |
Αλγόριθμοι εξαγωγής κανόνων συσχέτισης και εφαρμογέςΜουσουρούλη, Ιωάννα 24 October 2008 (has links)
Η παρούσα μεταπτυχιακή εργασία έχει στόχο τη μελέτη προβλημάτων «κρυμμένης γνώσης» από συστήματα και εφαρμογές ηλεκτρονικού εμπορίου (e-commerce) και ηλεκτρονικής μάθησης (e-learning) με κύριο στόχο τη βελτίωση της ποιότητας και της απόδοσης των παρεχόμενων υπηρεσιών προς τους τελικούς χρήστες.
Στο πρώτο κεφάλαιο παρουσιάζεται ένα σενάριο για σημασιολογικά εξατομικευμένο e-learning. Ο προτεινόμενος αλγόριθμος βασίζεται σε μια οντολογία (ontology) η οποία βοηθά στη δόμηση και στη διαχείριση του περιεχομένου που σχετίζεται με μια δεδομένη σειρά μαθημάτων, ένα μάθημα ή ένα θεματικό. Η διαδικασία χωρίζεται σε δύο στάδια: στο offline στάδιο το οποίο περιλαμβάνει τις ενέργειες προετοιμασίας των δεδομένων, δημιουργίας της οντολογίας και εξόρυξης από δεδομένα χρήσης (usage mining) και στο online στάδιο το οποίο περιλαμβάνει την εξαγωγή των εξατομικευμένων συστάσεων. Το προτεινόμενο σύστημα σε πρώτη φάση βρίσκει ένα αρχικό σύνολο συστάσεων βασισμένο στην οντολογία του πεδίου και στη συνέχεια χρησιμοποιεί τα frequent itemsets (συχνά εμφανιζόμενα σύνολα στοιχείων) για να το εμπλουτίσει, λαμβάνοντας υπόψη την πλοήγηση άλλων παρόμοιων χρηστών (similar users). Με τον τρόπο αυτό, μειώνεται ο χρόνος που απαιτείται για την ανάλυση όλων των frequent itemsets και των κανόνων συσχέτισης. Η ανάλυση εστιάζεται μόνο σε εκείνα τα σύνολα που προέρχονται από το συνδυασμό της ενεργούς συνόδου (current session) του χρήστη και των συστάσεων της οντολογίας. Αν και η εξατομίκευση απαιτεί αρκετά βήματα επεξεργασίας και ανάλυσης, στη συγκεκριμένη προσέγγιση το εμπόδιο αυτό αποφεύγεται με την εκτέλεση σημαντικού μέρους της διαδικασίας offline.
Στο δεύτερο κεφάλαιο μελετάται το πρόβλημα της παραγωγής προτάσεων σε μια εφαρμογή e-commerce. Η προτεινόμενη υβριδική προσέγγιση στοχεύει στην παραγωγή αποτελεσματικών συστάσεων για τους πελάτες ενός online καταστήματος που ενοικιάζει κινηματογραφικές ταινίες. Η γνώση για τους πελάτες και τα προϊόντα προκύπτει από τα δεδομένα χρήσης και τη δομή της οντολογίας σε συνδυασμό με τις εκτιμήσεις-βαθμολογίες των πελατών για τις ταινίες καθώς και την εφαρμογή τεχνικών ταιριάσματος «όμοιων» πελατών. Όταν ένα ή περισσότερα κριτήρια ταιριάσματος ικανοποιούνται, τότε άλλες ταινίες μπορούν να προσδιοριστούν σύμφωνα με το οντολογικό σχήμα που έχουν παρόμοια χαρακτηριστικά με αυτές που ο πελάτης έχει ήδη νοικιάσει. Στην περίπτωση ενός νέου πελάτη όπου το ιστορικό του είναι κενό, αναλύονται πληροφορίες από την αίτηση εγγραφής του ώστε να ταξινομηθεί σε μια συγκεκριμένη κλάση πελατών και να παραχθούν προτάσεις με βάση το οντολογικό σχήμα. Αυτή η ενοποίηση παρέχει πρόσθετη γνώση για τις προτιμήσεις των πελατών και επιτρέπει την παραγωγή επιτυχημένων συστάσεων. Ακόμη και στην περίπτωση του «cold-start problem» όπου δεν είναι διαθέσιμη αρχική πληροφορία για τη συμπεριφορά του πελάτη, η προσέγγιση προβαίνει σε σχετικές συστάσεις.
Στο τρίτο κεφάλαιο παρουσιάζεται μία νέα προσέγγιση στο πρόβλημα της δημιουργίας συστάσεων. Οι προηγούμενες προσεγγίσεις δεν λαμβάνουν υπόψη τους τη σειρά με την οποία ο χρήστης προσπελαύνει τα δεδομένα, είτε πρόκειται για e-learning είτε πρόκειται για e-commerce δεδομένα. Στο κεφάλαιο αυτό προτείνεται μία τεχνική η οποία λαμβάνει υπόψη τη σειρά με την οποία ο χρήστης προσπελαύνει τα δεδομένα (ordering). Πιο συγκεκριμένα μελετάται η τεχνική αυτή σε e-commerce συστήματα και καλάθια αγορών. Παρουσιάζεται και αναλύεται η υλοποίηση του προτεινόμενου αλγορίθμου. Επιπλέον γίνεται αξιολόγηση των αποτελεσμάτων του αλγορίθμου σε testing input data τα οποία και δείχνουν την ποιότητα των παραγόμενων συστάσεων. / -
|
3 |
Γενετική της μυασθένειας στον ελληνικό πληθυσμό: μελέτη γενετικής συσχέτισης πολυμορφισμών στα γονίδια IRF5, TNFAIP3 και IL-10Ζαγορίτη, Ζωή 07 June 2013 (has links)
Η Μυασθένεια είναι μια αυτοάνοση νόσος της νευρομυϊκής σύναψης που χαρακτηρίζεται από την παραγωγή αυτοαντισωμάτων έναντι, συνήθως, του AChR, καθώς και άλλων πρωτεϊνών της σύναψης. Στην παρούσα εργασία, πραγματοποιήθηκε μελέτη γενετικής συσχέτισης για την ταυτοποίηση πολυμορφισμών που πιθανώς εμπλέκονται στην εκδήλωση της Μυασθένειας. Για το σκοπό αυτό, επιλέχθηκαν πολυμορφισμοί οι οποίοι εδράζονται σε γονίδια που αποτελούν σημαντικούς ρυθμιστές της ανοσολογικής απόκρισης και έχουν προηγουμένως συσχετισθεί με άλλες αυτοάνοσες νόσους. Τα υποψήφια γονίδια είναι τα: interferon regulatory factor 5 (IRF-5), TNFα-induced protein 3 (TNFAIP3) και interleukin-10 (IL-10).
Στη μελέτη συμμετείχαν 101 μυασθενείς και ισάριθμα υγιή άτομα ως ομάδα αναφοράς, όλοι ελληνικής καταγωγής. Οι μέθοδοι γονοτύπησης που εφαρμόσθηκαν περιλαμβάνουν τον προσδιορισμό αλληλουχίας κατά Sanger, την HRM ανάλυση, την PCR-RFLP και την PCR σε συνδυασμό με ηλεκτροφόρηση σε αγαρόζη, στην περίπτωση ενός in/del 30 bp.
Μια στατιστική τάση συσχέτισης (p=0.068) ανιχνεύθηκε για τους πολυμορφισμούς στον υποκινητή της IL-10 μεταξύ των μυασθενών με πρώιμη ηλικία έναρξης της νόσου (early-onset) και αυτών που εμφάνισαν τη νόσο ηλικιακά αργότερα (late-onset). Για τους υπόλοιπους πολυμορφισμούς που μελετήθηκαν, δεν παρατηρήθηκαν στατιστικά σημαντικές διαφορές.
Η μελέτη αυτή αποτελεί την πρώτη προσπάθεια συσχέτισης πολυμορφισμών των γονιδίων IRF-5 και TNFAIP3 με τη Μυασθένεια, σε οποιονδήποτε πληθυσμό. Όσον αφορά τους πολυμορφισμούς του υποκινητή της IL-10, περαιτέρω μελέτες σε πολυπληθέστερες ομάδες πιθανώς να αποκαλύψουν μια στατιστικώς ισχυρότερη συσχέτιση. / Myasthenia gravis (MG) is a heterogeneous autoimmune disease characterized by the production of autoantibodies against proteins of the postsynaptic membrane, in the neuromuscular junction. The contribution of genetic factors to MG susceptibility has been evaluated through family and twin studies, however, the precise genetic background of the disease remains elusive.
We conducted a case-control association study in 101 unrelated MG patients, of Hellenic origin and 101 healthy volunteers in order to assess the involvement of common genetic variants in susceptibility to MG. We focused on three candidate genes which have been clearly associated with several autoimmune diseases, aiming to investigate their potential implication in MG pathogenesis. These are interferon regulatory factor 5 (IRF-5), TNFα-induced protein 3 (TNFAIP3), also known as A20, and interleukin-10 (IL-10), key molecules in the regulation of immune function.
Genotyping was performed by PCR-RFLP, direct automated sequencing, High Resolution Melt curve Analysis (HRM) and PCR-agarose gel electrophoresis analysis in the case of a 30 bp in/del polymorphism.
A statistical trend of association (p=0.068) between IL-10 promoter single nucleotide polymorphisms (SNPs) and the subgroups of early and late-onset MG patients was revealed. No statistically significant differences were observed in the rest of the variants examined. As far as we are aware, this is the first worldwide attempt to address the possible association between IRF-5 and TNFAIP3 common genetic variants and the genetic basis of MG.
|
4 |
Text mining : μια νέα προτεινόμενη μέθοδος με χρήση κανόνων συσχέτισηςΝασίκας, Ιωάννης 14 September 2007 (has links)
Η εξόρυξη κειμένου (text mining) είναι ένας νέος ερευνητικός τομέας που προσπαθεί να επιλύσει το πρόβλημα της υπερφόρτωσης πληροφοριών με τη χρησιμοποίηση των τεχνικών από την εξόρυξη από δεδομένα (data mining), την μηχανική μάθηση (machine learning), την επεξεργασία φυσικής γλώσσας (natural language processing), την ανάκτηση πληροφορίας (information retrieval), την εξαγωγή πληροφορίας (information extraction) και τη διαχείριση γνώσης (knowledge management).
Στο πρώτο μέρος αυτής της διπλωματικής εργασίας αναφερόμαστε αναλυτικά στον καινούριο αυτό ερευνητικό τομέα, διαχωρίζοντάς τον από άλλους παρεμφερείς τομείς.
Ο κύριος στόχος του text mining είναι να βοηθήσει τους χρήστες να εξαγάγουν πληροφορίες από μεγάλους κειμενικούς πόρους. Δύο από τους σημαντικότερους στόχους είναι η κατηγοριοποίηση και η ομαδοποίηση εγγράφων.
Υπάρχει μια αυξανόμενη ανησυχία για την ομαδοποίηση κειμένων λόγω της εκρηκτικής αύξησης του WWW, των ψηφιακών βιβλιοθηκών, των ιατρικών δεδομένων, κ.λ.π.. Τα κρισιμότερα προβλήματα για την ομαδοποίηση εγγράφων είναι η υψηλή διαστατικότητα του κειμένου φυσικής γλώσσας και η επιλογή των χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν μια περιοχή.
Κατά συνέπεια, ένας αυξανόμενος αριθμός ερευνητών έχει επικεντρωθεί στην έρευνα για τη σχετική αποτελεσματικότητα των διάφορων τεχνικών μείωσης διάστασης και της σχέσης μεταξύ των επιλεγμένων χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν το κείμενο και την ποιότητα της τελικής ομαδοποίησης. Υπάρχουν δύο σημαντικοί τύποι τεχνικών μείωσης διάστασης: οι μέθοδοι «μετασχηματισμού» και οι μέθοδοι «επιλογής».
Στο δεύτερο μέρος αυτής τη διπλωματικής εργασίας, παρουσιάζουμε μια καινούρια μέθοδο «επιλογής» που προσπαθεί να αντιμετωπίσει αυτά τα προβλήματα. Η προτεινόμενη μεθοδολογία είναι βασισμένη στους κανόνες συσχέτισης (Association Rule Mining). Παρουσιάζουμε επίσης και αναλύουμε τις εμπειρικές δοκιμές, οι οποίες καταδεικνύουν την απόδοση της προτεινόμενης μεθοδολογίας. Μέσα από τα αποτελέσματα που λάβαμε διαπιστώσαμε ότι η διάσταση μειώθηκε. Όσο όμως προσπαθούσαμε, βάσει της μεθοδολογίας μας, να την μειώσουμε περισσότερο τόσο χανόταν η ακρίβεια στα αποτελέσματα. Έγινε μια προσπάθεια βελτίωσης των αποτελεσμάτων μέσα από μια διαφορετική επιλογή των χαρακτηριστικών γνωρισμάτων. Τέτοιες προσπάθειες συνεχίζονται και σήμερα.
Σημαντική επίσης στην ομαδοποίηση των κειμένων είναι και η επιλογή του μέτρου ομοιότητας. Στην παρούσα διπλωματική αναφέρουμε διάφορα τέτοια μέτρα που υπάρχουν στην βιβλιογραφία, ενώ σε σχετική εφαρμογή κάνουμε σύγκριση αυτών.
Η εργασία συνολικά αποτελείται από 7 κεφάλαια: Στο πρώτο κεφάλαιο γίνεται μια σύντομη ανασκόπηση σχετικά με το text mining. Στο δεύτερο κεφάλαιο περιγράφονται οι στόχοι, οι μέθοδοι και τα εργαλεία που χρησιμοποιεί η εξόρυξη κειμένου. Στο τρίτο κεφάλαιο παρουσιάζεται ο τρόπος αναπαράστασης των κειμένων, τα διάφορα μέτρα ομοιότητας καθώς και μια εφαρμογή σύγκρισης αυτών. Στο τέταρτο κεφάλαιο αναφέρουμε τις διάφορες μεθόδους μείωσης της διάστασης και στο πέμπτο παρουσιάζουμε την δικιά μας μεθοδολογία για το πρόβλημα. Έπειτα στο έκτο κεφάλαιο εφαρμόζουμε την μεθοδολογία μας σε πειραματικά δεδομένα. Η εργασία κλείνει με τα συμπεράσματα μας και κατευθύνσεις για μελλοντική έρευνα. / Text mining is a new searching field which tries to solve the problem of information overloading by using techniques from data mining, natural language processing, information retrieval, information extraction and knowledge management.
At the first part of this diplomatic paper we detailed refer to this new searching field, separated it from all the others relative fields.
The main target of text mining is helping users to extract information from big text resources. Two of the most important tasks are document categorization and document clustering.
There is an increasing concern in document clustering due to explosive growth of the WWW, digital libraries, technical documentation, medical data, etc. The most critical problems for document clustering are the high dimensionality of the natural language text and the choice of features used to represent a domain.
Thus, an increasing number of researchers have concentrated on the investigation of the relative effectiveness of various dimension reduction techniques and of the relationship between the selected features used to represent text and the quality of the final clustering. There are two important types of techniques that reduce dimension: transformation methods and selection methods.
At the second part of this diplomatic paper we represent a new selection method trying to tackle these problems. The proposed methodology is based on Association Rule Mining. We also present and analyze empirical tests, which demonstrate the performance of the proposed methodology. Through the results that we obtained we found out that dimension has been reduced. However, the more we have been trying to reduce it, according to methodology, the bigger loss of precision we have been taking. There has been an effort for improving the results through a different feature selection. That kind of efforts are taking place even today.
In document clustering is also important the choice of the similarity measure. In this diplomatic paper we refer several of these measures that exist to bibliography and we compare them in relative application.
The paper totally has seven chapters. At the first chapter there is a brief review about text mining. At the second chapter we describe the tasks, the methods and the tools are used in text mining. At the third chapter we give the way of document representation, the various similarity measures and an application to compare them. At the fourth chapter we refer different kind of methods that reduce dimensions and at the fifth chapter we represent our own methodology for the problem. After that at the sixth chapter we apply our methodology to experimental data. The paper ends up with our conclusions and directions for future research.
|
5 |
Υλοποίηση εφαρμογής εξόρυξης δεδομένων σε αποτελέσματα εντοπισμού της θέσης κινητού χρήστη και αξιοποίηση της πληροφορίας σε M-commerce εφαρμογέςΜεττούρης, Χρίστος 07 November 2008 (has links)
Στην παρούσα διπλωματική υλοποιείται εφαρμογή, η οποία χρησιμοποιεί τεχνικές εξόρυξης δεδομένων σε αποτελέσματα εντοπισμού της θέσης κινητού χρήστη για παραγωγή πληροφορίας σε μορφή κανόνων συσχέτισης, ενώ παράλληλα γίνεται αξιοποίηση των αποτελεσμάτων εντοπισμού της θέσης σε M-commerce εφαρμογές. Η εφαρμογή υλοποιήθηκε για χρήση της σε μια υπεραγορά, στην οποία οι πελάτες θα ανιχνεύονται στα διάφορα τμήματά της, κατά την πραγματοποίηση των αγορών τους. Από τα αποτελέσματα εντοπισμού της θέσης του χρήστη, παράγονται κανόνες συσχέτισης, οι οποίοι αφορούν τις ανιχνεύσεις των πελατών στα τμήματα αυτά. Επίσης παρουσιάζεται η πορεία των χρηστών στην υπεραγορά, ενώ τελικά αποστέλονται σε αυτούς M-commerce σχετικά μηνύματα. / In this thesis, we present an application that utilizes Data Mining techniques on data collected by a user positioning application, to extract useful information in the form of association Rules. Furthermore, user positioning results are being used for M-commerce purposes. The application is developed to be used by a supermarket, in which all customers are detected, so that their location becomes known. By using the positioning results, association rules are extracted. Apart from the extraction of association rules, the application presents each customer’s route in the supermarket. Finally, M-commerce related messages are being sent to the customers, according to their preferences, concerning the areas of the supermarket.
|
6 |
Ανάπτυξη αποδοτικών παραμετρικών τεχνικών αντιστοίχισης εικόνων με εφαρμογή στην υπολογιστική όρασηΕυαγγελίδης, Γεώργιος 12 January 2009 (has links)
Μια από τις συνεχώς εξελισσόμενες περιοχές της επιστήμης των υπολογιστών είναι η Υπολογιστική Όραση, σκοπός της οποίας είναι η δημιουργία έξυπνων συστημάτων για την ανάκτηση πληροφοριών από πραγματικές εικόνες. Πολλές σύγχρονες εφαρμογές της υπολογιστικής όρασης βασίζονται στην αντιστοίχιση εικόνων. Την πλειοψηφία των αλγορίθμων αντιστοίχισης συνθέτουν παραμετρικές τεχνικές, σύμφωνα με τις οποίες υιοθετείται ένα παραμετρικό μοντέλο, το οποίο εφαρμοζόμενο στη μια εικόνα δύναται να παρέχει μια προσέγγιση της άλλης. Στο πλαίσιο της διατριβής μελετάται εκτενώς το πρόβλημα της Στερεοσκοπικής Αντιστοίχισης και το γενικό πρόβλημα της Ευθυγράμμισης Εικόνων. Για την αντιμετώπιση του πρώτου προβλήματος προτείνεται ένας τοπικός αλγόριθμος διαφορικής αντιστοίχισης που κάνει χρήση μιας νέας συνάρτησης κόστους, του Τροποποιημένου Συντελεστή Συσχέτισης (ECC), η οποία ενσωματώνει το παραμετρικό μοντέλο μετατόπισης στον κλασικό συντελεστή συσχέτισης. Η ενσωμάτωση αυτή καθιστά τη νέα συνάρτηση κατάλληλη για εκτιμήσεις ανομοιότητας με ακρίβεια μικρότερη από αυτήν του εικονοστοιχείου. Αν και η συνάρτηση αυτή είναι μη γραμμική ως προς την παράμετρο μετατόπισης, το πρόβλημα μεγιστοποίησης έχει κλειστού τύπου λύση με αποτέλεσμα τη μειωμένη πολυπλοκότητα της διαδικασίας της αντιστοίχισης με ακρίβεια υπο-εικονοστοιχείου. Ο προτεινόμενος αλγόριθμος παρέχει ακριβή αποτελέσματα ακόμα και κάτω από μη γραμμικές φωτομετρικές παραμορφώσεις, ενώ η απόδοσή του υπερτερεί έναντι γνωστών στη διεθνή βιβλιογραφία τεχνικών αντιστοίχισης ενώ φαίνεται να είναι απαλλαγμένος από το φαινόμενο pixel locking. Στην περίπτωση του προβλήματος της ευθυγράμμισης εικόνων, η προτεινόμενη συνάρτηση γενικεύεται με αποτέλεσμα τη δυνατότητα χρήσης οποιουδήποτε δισδιάστατου μετασχηματισμού. Η μεγιστοποίησή της, η οποία αποτελεί ένα μη γραμμικό πρόβλημα, επιτυγχάνεται μέσω της επίλυσης μιας ακολουθίας υπο-προβλημάτων βελτιστοποίησης. Σε κάθε επανάληψη επιβάλλεται η μεγιστοποίηση μιας μη γραμμικής συνάρτησης του διανύσματος διορθώσεων των παραμέτρων, η οποία αποδεικνύεται ότι καταλήγει στη λύση ενός γραμμικού συστήματος. Δύο εκδόσεις του σχήματος αυτού προτείνονται: ο αλγόριθμος Forwards Additive ECC (FA-ECC) και o αποδοτικός υπολογιστικά αλγόριθμος Inverse Compositional ECC (IC-ECC). Τα προτεινόμενα σχήματα συγκρίνονται με τα αντίστοιχα (FA-LK και SIC) του αλγόριθμου Lucas-Kanade, ο οποίος αποτελεί σημείο αναφοράς στη σχετική βιβλιογραφία, μέσα από μια σειρά πειραμάτων. Ο αλγόριθμος FA-ECC παρουσιάζει όμοια πολυπλοκότητα με τον ευρέως χρησιμοποιούμενο αλγόριθμο FA-LΚ και παρέχει πιο ακριβή αποτελέσματα ενώ συγκλίνει με αισθητά μεγαλύτερη πιθανότητα και ταχύτητα. Παράλληλα, παρουσιάζεται πιο εύρωστος σε περιπτώσεις παρουσίας προσθετικού θορύβου, φωτομετρικών παραμορφώσεων και υπερ-μοντελοποίησης της γεωμετρικής παραμόρφωσης των εικόνων. Ο αλγόριθμος IC-ECC κάνει χρήση της αντίστροφης λογικής, η οποία στηρίζεται στην αλλαγή των ρόλων των εικόνων αντιστοίχισης και συνδυάζει τον κανόνα ενημέρωσης των παραμέτρων μέσω της σύνθεσης των μετασχηματισμών. Τα δύο αυτά χαρακτηριστικά έχουν ως αποτέλεσμα τη δραστική μείωση του υπολογιστικού κόστους, ακόμα και σε σχέση με τον SIC αλγόριθμο, με τον οποίο βέβαια παρουσιάζει παρόμοια συμπεριφορά. Αν και ο αλγόριθμος FA-ECC γενικά υπερτερεί έναντι των τριών άλλων αλγορίθμων, η επιλογή μεταξύ των δύο προτεινόμενων σχημάτων εξαρτάται από το λόγο μεταξύ ακρίβειας αντιστοίχισης και υπολογιστικού κόστους. / Computer Vision has been recently one of the most active research areas in computer society. Many modern computer vision applications require the solution of the well known image registration problem which consist in finding correspondences between projections of the same scene. The majority of registration algorithms adopt a specific parametric transformation model, which is applied to one image, thus providing an approach of the other one. Towards the solution of the Stereo Correspondence problem, where the goal is the construction of the disparity map, a local differential algorithm is proposed which involves a new similarity criterion, the Enhanced Correlation Coefficient (ECC). This criterion is invariant to linear photometric distortions and results from the incorporation of a single parameter model into the classical correlation coefficient, defining thus a continuous objective function. Although the objective function is non-linear in translation parameter, its maximization results in a closed form solution, saving thus much computational burden. The proposed algorithm provides accurate results even under non-linear photometric distortions and its performance is superior to well known conventional stereo correspondence techniques. In addition, the proposed technique seems not to suffer from pixel locking effect and outperforms even stereo techniques, dedicated to the cancellation of this effect. For the image alignment problem, the maximization of a generalized version of ECC function that incorporates any 2D warp transformation is proposed. Although this function is a highly non-linear function of the warp parameters, an efficient iterative scheme for its maximization is developed. In each iteration of the new scheme, an efficient approximation of the nonlinear objective function is used leading to a closed form solution of low computational complexity. Two different iterative schemes are proposed; the Forwards Additive ECC (FA-ECC) and the Inverse Compositional ECC (IC-ECC) algorithm. Τhe proposed iterative schemes are compared with the corresponding schemes (FA-LK and SIC) of the leading Lucas-Kanade algorithm, through a series of experiments. FA-ECC algorithm makes use of the known additive parameter update rule and its computational cost is similar to the one required by the most widely used FA-LK algorithm. The proposed iterative scheme exhibits increased learning ability, since it converges faster with higher probability. This superiority is retained even in presence of additive noise and photometric distortion, as well as in cases of over-modelling the geometric distortion of the images. On the other hand, IC-ECC algorithm makes use of inverse logic by swapping the role of images and adopts the transformation composition update rule. As a consequence of these two options, the complexity per iteration is drastically reduced and the resulting algorithm constitutes the most computationally efficient scheme than three other above mentioned algorithms. However, empirical learning curves and probability of convergence scores indicate that the proposed algorithm has a similar performance to the one exhibited by SIC. Though FA-ECC seems to be clearly more robust in real situation conditions among all the above mentioned alignment algorithms, the choice between two proposed schemes necessitates a trade-off between accuracy and speed.
|
Page generated in 0.0582 seconds