1 |
Исследование модели нейронной сети с пространственным вниманием для классификации фракции щебня : магистерская диссертация / Research on a neural network model with spatial attention for gravel fraction classificationТряпицын, Д. Л., Tryapitsyn, D. L. January 2024 (has links)
В строительной сфере применяют различные фракции щебня в качестве засыпных смесей. Учитывая, что стоимость щебня зависит от его вида, требуется автоматизированная система для проверки его типа и исключения человеческих ошибок. В данной работе предлагается метод классификации фракции щебня на изображении с помощью архитектуры EfficientNet-b1 с использованием пространственного внимания (Spatial Attention), совмещенный с функцией потерь LDAM. Для обучения и тестирования модели использовался набор из 635 изображений, разделенный на 7 фракций щебня. Полученная модель показала высокую точность, достигнув уровня 97%. / In the construction industry, various fractions of gravel are used as aggregate materials. Considering that the cost of gravel depends on its type, an automated system is required to verify its type and eliminate human errors. This work proposes a method for classifying gravel fractions in images using the EfficientNet-b1 architecture with the addition of Spatial Attention, combined with the LDAM loss function. A dataset of 635 images, divided into 7 gravel fractions, was used for training and testing the model. The resulting model demonstrated high accuracy, reaching a level of 97%.
|
2 |
Разработка системы компьютерного зрения для определения вида фракции щебня : магистерская диссертация / Development of a computer vision system for determining the type of crushed stone fractionАхметов, В. М., Akhmetov, V. M. January 2024 (has links)
Основная цель выпускной квалификационной работы состоит в разработке системы компьютерного зрения для определения вида фракции щебня. А также определении наиболее эффективного метода для определения фракции щебня, сравнивая задачи компьютерного зрения: обнаружение объектов и классификация. Первая часть исследования посвящена анализу существующий методов и алгоритмов классификации изображений на основе нейронных сетей. Были проанализированы модели, предназначенные для обнаружения объектов и классификации. Для задачи классификации изображений сравнение выполнялось для моделей: Resnet, Efficientnet, Deit, Tinyvit. Для задачи обнаружения объектов: Yolo, Faster R-CNN и SSD. Во второй части исследования была обучена модель обнаружения объектов и обучены модели классификации. После произведено сравнение производительности данных моделей для решаемой задачи – определения фракции щебня. Третья часть выпускной квалификационной работы направлена на разработку системы компьютерного зрения для определения фракции щебня. Для работоспособности системы было развернуто два Docker-контейнера и сервер Uvicorn с работающим приложением FastAPI. / The main objective of the final qualification work is to develop a computer vision system for determining the type of crushed stone fraction. As well as determining the most effective method for determining the crushed stone fraction, comparing the tasks of computer vision: object detection and classification. The first part of the study is devoted to the analysis of existing methods and algorithms for image classification based on neural networks. Models designed for object detection and classification were analyzed. For the task of image classification, the comparison was performed for the following models: Resnet, Efficientnet, Deit, Tinyvit. For the task of object detection: Yolo, Faster R-CNN and SSD. In the second part of the study, an object detection model was trained and classification models were trained. After that, a comparison of the performance of these models for the problem being solved - determining the crushed stone fraction was made. The third part of the final qualification work is aimed at developing a computer vision system for determining the crushed stone fraction. For the system to work, two Docker containers and a Uvicorn server with a running FastAPI application were deployed.
|
Page generated in 0.0268 seconds