• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Odor sensitivity in CD-1 mice for "green" odors

Murali, Sathish kumar January 2011 (has links)
―Green‖ odors comprise a group of eight structurally related aliphatic alkenals and alkenols which are characteristic for the odor of a wide variety of plant materials. Using an automated olfactometer, the olfactory detection thresholds for ―green‖ odors were determined in six CD-1 mice and compared with that of spider monkeys and human subjects. Detection threshold values for alcoholic ‖green‖ odors (cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-2-hexen-1-ol and 1-hexanol) ranged from 8.1 x 109 to 8.1 x 1011 molecules/cm3 and for aldehydic ‖green‖ odors (cis-3-hexenal, trans-3-hexenal, trans-2-hexenal and n-hexanal) , from 8.1 x 107 to 8.1 x 1011 molecules/ cm3 . Detection threshold values of ―green‖ odor with double bond ranged from 8.1 x 107 to 8.1 x 1011 molecules/cm3 and for ―green‖ odor without double bond ranged from 8.1 x 108 to 8.1 x 1011 molecules/cm3. Detection threshold value of cis- configured ―green‖ odors ranged from 8.1 x 108 to 8.1 x 1011 molecules/ cm3 and for trans- configured ―green‖ odors threshold value ranged from 8.1 x 107 to 8.1 x 1011 molecules/ cm3. Trans-2-hexenal with a double bond at C-2 position in its molecular structure yielded the lowest detection threshold value when compared the other ―green‖ odors (8.1 x 107 to 8.1 x 109 molecules /cm3) which shows not only the presence of double bond plays a major role in detection but the position of the double bond present. A comparison between the present data and data from the other species showed that CD-1 mice displayed lower detection thresholds for all ‖green‖ odors than human subjects and spider monkeys except for the cis-3-hexen-1-ol odor. These findings suggest that the differences in the threshold values between ―green‖ odors are due to the difference in the molecular structure like the presence of double bond and the position of double bond.
2

Olfactory sensitivity of spider monkeys (Ateles geoffroyi) for "green odors"

Løtvedt, Pia Katrine January 2011 (has links)
Primates have traditionally been viewed as having a poorly developed sense of smell. However, in recent years, studies have shown that at least some primate species use olfaction in a number of behaviors, and that they have a high olfactory sensitivity for various chemical classes of odorants. Using a two-choice instrumental conditioning paradigm, the present study assessed olfactor ydetection thresholds of three spider monkeys (Ateles geoffroyi) for eight aliphatic alcohols and aldehydes, known as "green odors". With all odorants, the animals detected concentrations below 1 parts per million, with single individuals performing even better. The type of functional group present systematically affected olfactory detection thresholds, whereas the presence, position and configuration of a double bond did not. Compared to previously tested classes of odorants, thespider monkeys were not particularly sensitive to "green odors". Furthermore, they are lesssensitive for "green odors" compared to humans and mice. The present results suggest that neuroanatomical and genetic comparisons across species are poor predictors of olfactory sensitivity.

Page generated in 0.053 seconds