• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comptage des systèmes locaux ℓ-adiques sur une courbe / Counting ℓ-adic local systems on a curve

Yu, Hongjie 10 July 2018 (has links)
Soit X1 une courbe projective lisse et géométriquement connexe sur un corps fini Fq avec q = pn éléments où p est un nombre premier. Soit X le changement de base de X1 à une clôture algébrique de Fq. Nous donnons une formule pour le nombre des systèmes locaux ℓ-adiques (ℓ ≠ p) irréductibles de rang donné sur X fixé par l’endomorphisme de Frobenius. Nous montrons que ce nombre est semblable à une formule de point fixe de Lefschetz pour une variété sur Fq, ce qui généralise un résultat de Drinfeld en rang 2 et prouve une conjecture de Deligne. Pour ce faire, nous passerons du côté automorphe, utiliserons la formule des traces d’Arthur non-invariante, et relierons le nombre cherché avec le nombre Fq-points de l’espace des modules des fibrés de Higgs stables. / Let X1 be a projective, smooth and geometrically connected curve over Fq with q = pn elements where p is a prime number, and let X be its base change to an algebraic closure of Fq.We give a formula for the number of irreducible ℓ-adic local systems (ℓ ≠ p) with a fixed rank over X fixed by the Frobenius endomorphism.We prove that this number behaves like a Lefschetz fixed point formula for a variety over Fq, which generalises a result of Drinfeld in rank 2 and proves a conjecture of Deligne. To do this, we pass to the automorphic side by Langlands correspondence, then use Arthur’s non-invariant trace formula and link this number to the number of Fq-points of the moduli space of stable Higgs bundles.

Page generated in 0.0585 seconds