• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving classification accuracy for machine learning / 機械学習における分類精度の向上 / キカイ ガクシュウ ニオケル ブンルイ セイド ノ コウジョウ

鄭 弯弯, Wanwan Zheng 22 March 2021 (has links)
本論文は,5章より構成されている。第1章では,機械学習の現状,応用及び構成を述べた上,本研究で扱った三つの課題を挙げた。第2章では,小サンプルデータの特徴選択方法を提案した。第3章では,クラスの不均衡性と学習データのサイズが分類器精度への影響を検討した。第4章では,ノイズが分類器の学習を妨げる問題点に対して,多要素ベースの学習に基づいた高速クラスノイズの検出方法を提案した。第5章では,分析の主な結果をまとめ,今後の課題と展望を述べた。 / This thesis is organized under five chapters. Chapter 1 gives a brief explanation of what machine learning is and why it matters. Chapter 2 makes a proposal to improve the performance of feature selection methods with low-sample-size data. Chapter 3 studies the effects of class imbalance and training data size on classifier learning empirically. Chapter 4 proposes a fast noise detector referring to the problems of noise detection algorithms, which are over-cleansing, large computational complexity and long response time. Chapter 5 draws a summary and the closing. / 博士(文化情報学) / Doctor of Culture and Information Science / 同志社大学 / Doshisha University

Page generated in 0.0457 seconds