1 |
半純函數與其導數之值分佈 / On The Value Distribution Of Meromorphic Functions With Their Derivatives歐姿君, Ou, Tze Chun Unknown Date (has links)
Haymen猜測:對任意的超越半純函數 f(z),f'(z)f(z)^n 取所有值無窮多次,其中至多只有一個例外值。這個著名的猜測,大部分的情形已被證明是正確的。另外,Hayman 證明 f'(z)-af(z)^n 取所有有限值無窮多次
,其中 a 為一複數且 n≧5 的正整數。在本篇論文裡,我們將探討以小函數為係數的半純函數微分多項式之值分佈問題。並將Hayman的結果推廣至 f^{k}(z)f(z)^n 與 f^{k}(z)-af(z)^n 的情形。同時,我們也證明一些
A類半純函數與其導數的值分佈結果。 / A famous conjecture of Hayman says that if f(z) is a transcendental meromorphic function, then f'(z)f(z)^n assumes all finite values except possibly zero infinitely often. The conjecture was solved in most cases. Another result of Hayman says that f'(z)-af(z)^n, where n≧5 and a is a complex number, assumes all finite values infinitely often. In this thesis, we will study the value distribution of some differential polynomial in a meromorphic function with small functions as coefficents. In fact, we will generalize Hayman's results to the cases f^(k)(z)f(z)^n and f^(k)(z)-af(z)^n. Also, the value distribution of meromorphic functions of class A with their derivatives are obtained.
|
2 |
半純函數的唯一性 / Some Results on the Uniqueness of Meromorphic Functions陳耿彥, Chen, Keng-Yan Unknown Date (has links)
在這篇論文裡,我們利用值分佈的理論來探討半純函數的共值與唯一性的問題,本文包含了以下的結果:將Jank與Terglane有關三個A類中的半純函數唯一性的結果推廣到任意q個半純函數的情形;證明了C. C. Yang的一個猜測;建構了一類半純函數恰有兩個虧值,而且算出它們的虧格;將
Nevanlinna 五個值的定理推廣至兩個半純函數部分共值的情形;探討純函數
與其導數的共值問題;最後,證明了兩個半純函數共四個值且重數皆不同的定
理。 / In this thesis, we study the sharing value problems and the
uniqueness problems of meromorphic functions in the theory of value distribution. In fact, this thesis contains the following results: We generalize a unicity condition of three meromorphic functions given by Jank and Terglane in class A to the case of arbitrary q meromorphic functoins. An elementary proof of a conjecture of C. C. Yang is provided. We construct a class of meromorphic functions with exact two deficient values and their deficiencies are explicitly computed. We generalize the Nevanlinna's five-value theorem to the cases that two meromorphic functions partially share either five or more values, or five or
more small functions. In each case, we formulate a way to measure how far these two meromorphic functions are from sharing either values or small functions, and use this measurement to prove a uniqueness theorem. Also, we prove some uniqueness theorems on entire functions that share a pair of values (a,-a) with their derivatives, which are reformulations of some important results about uniqueness of entire functions that share values with their derivatives. Finally, we prove that if two distinct non-constant meromorphic functions $f$ and $g$ share four distinct values a_1, a_2, a_3, a_4 DM such that each a_i-point is either a (p,q)-fold or (q,p)-fold point of f and g, then (p,q) is either (1,2) or (1,3) and f, g are in some particular forms.
|
3 |
半純函數體中的函數方程 / On Functional Equations in the Field of Meromorphic Functions葉長青, Yeh, Chang Ching Unknown Date (has links)
在這篇論文中,我們將利用值分佈的理論來探討下列函數方程解的存在性與其性質:
\[\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\]
其中 $a_1(z),\cdots ,a_p(z)$ 為半純函數。對某些特殊方程,除了文獻裡已知的結果外,我們亦提供其它的例子。一般而言,我們探討解存在的必要條件。另外,我們證明了某一類半純函數之零點與極點之分佈的結果。 / In this thesis, we use the theory of value distribution to study the existence of solution of the following functional equation:
\[\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\]
where $a_1(z),\cdots ,a_p(z)$ are meromorphic functions. For some special case, new and old examples of the solutions are given. For the general case, a necessary condition for the existence of solution is considered. Moreover, we obtain a result on the distribution of zeros and poles of a class of meromorphic functions.
|
4 |
A 類半純函數之某些值分佈 / Some value distribution of Meromorphic functions of Class A陳盈穎, Chen, Ying Ying Unknown Date (has links)
在這篇論文裡,我們探討 $\mathcal{A}$ 類半純函數的值分佈基本理論。我們證明了每一個 $\mathcal{A}$ 類半純函數最多有兩個重值,而這個結果是最佳的情形。進而,我們證明若一個 $\mathcal{A}$ 類半純函數 $f$ 與其導數 $f^{(k)}$ 共非零的複數值,則 $f\equiv f^{(k)}$。 / In this thesis, we study the basic theory of value distribution of meromorphic function of class $\mathcal{A}$. We prove that every meromorphic function of class $\mathcal{A}$ has at most two multiple values and the result is sharp. Also, we prove that if a meromorphic function $f$ of class $\mathcal{A}$ and its derivative $f^{(k)}$ share a non-zero complex value, then $f\equiv f^{(k)}$.
|
Page generated in 0.024 seconds