1 |
比較使用Kernel和Spline法的傘型迴歸估計 / Compare the Estimation on Umbrella Function by Using Kernel and Spline Regression Method賴品霖, Lai, Pin Lin Unknown Date (has links)
本研究探討常用的兩個無母數迴歸方法,核迴歸與樣條迴歸,在具有傘型限制式下,對於傘型函數的估計與不具限制式下的傘型函數估計比較,同時也探討不同誤差變異對估計結果的影響,並進一步探討受限制下兩方法的估計比較。本研究採用「估計頂點位置與實際頂點位置差」及「誤差平方和」作為衡量估計結果的指標。在帶寬及節點的選取上,本研究採用逐一剔除交互驗證法來篩選。模擬結果顯示,受限制的核函數在誤差變異較大的頂點位置估計較佳,誤差變異縮小時反而頂點位置估計較差,受限制的B-樣條函數也有類似的狀況。而在兩方法的比較上,對於較小的誤差變異,核函數的頂點位置估計能力不如樣條函數,但在整體的誤差平方和上卻沒有太大劣勢,當誤差變異較大時,核函數的頂點位置估計能力有所提升,整體誤差平方和仍舊維持還不錯的結果。 / In this study, we give an umbrella order constraint on kernel and spline regression model. We compare their estimation in two measurements, one is the difference of estimate peak and true peak, the other one is the sum of square difference on predict and the true value. We use leave-one-out cross validation to select bandwidth for kernel function and also to decide the number of knots for spline function. The effect of different error size is also considered. Some of R packages are used when doing simulation. The result shows that when the error size is bigger, the prediction of peak location is better in both constrained kernel and spline estimation. The constrained spline regression tends to provide better peak location estimation compared to constrained kernel regression.
|
Page generated in 0.0186 seconds