• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

應用資料採礦技術於多個資料庫連結與整合

劉致琪 Unknown Date (has links)
現今電子化的時代,有些企業雖然擁有數百萬的資料,但要分析起來是相當困難且耗時的,往往又浪費人力與金錢,而又無法得到預期的結果。而利用資料採礦技術,便可以從這大量的資料中,挖掘出隱藏的、有用的訊息及知識,還可以從既有的資料預測未來,使企業可優先獲得商機。 對於資料採礦而言,一開始的資料收集便是一項很重要的課題,資料品質的良莠,牽動著結果的正確性及預測的成敗。但每一個研究主題都有其各自的目的、所需的資料變數、適用的演算法等等,所以也有可能無法幸運地在同一個資料庫中得到所需的完整訊息,若是重新進行調查,是很費時、費力的工作。當我們面臨以上問題時,對於部份資料的缺漏該如何補救呢?!這便是我們在本研究中的研究目的。所以我們可以試著從現有的資料庫下,利用兩個其他的資料庫來輔助,利用函數映射的方法來補齊我們所要的資料,如此情況下再來做資料採礦,便能更有效率;對於我們所建立出來的預測模型,也更為準確。 在資料庫連結的過程中,我們討論了三種情況,分別為三個資料庫間有相同欄位、兩兩資料庫有相同欄位、三個資料庫間沒有相同欄位。從研究結果發現,不管資料庫之間有無相同欄位可供連結使用,利用函數映射方法為資料庫增加訊息是可行的,而且效能相當不錯,可以提供給資料採礦工作者在蒐集資料時的參考,以及未來的研究方向。
2

利用函數映射進行資料庫增值於資料採礦中

林建言 Unknown Date (has links)
人口的增長、現代化的生活環境,讓人們必須去面對隨時不斷產生的巨量資料;不過值得慶幸的是,電腦設備的運算、儲存能力一直在改進,所以人類所能處理的資料量也隨之提升,資料採礦技術的發展便是人類嘗試在大量資料中進行分析,以解決生活中所遇到的難題。 許多實際個案的結果顯示,資料採礦工作確實能替分析者帶來更好的績效,然而仍是有不少的失敗案例。如果深入去分析失敗原因,問題並不是出於資料採礦技術無法使用,而是資料品質不良或是資料內涵資訊不足所導致的。 資料庫中有用的變數不足的問題可以藉由重新收集資料解決,然而這勢必需要花費龐大的經費並且缺乏時效性。如何利用其他的外部資料來提昇資料庫的資訊含量便是本研究的目的。在實證過程中,利用工商業與服務業普查資料庫和技術創新資料庫做為分析所使用的資料庫;並且控制資料庫連結變數個數、建模資料比例和各類模型三個因子,採用函數映設方式,進行資料庫增值的工作。 從研究結果可以發現,確實可以藉由其他資料或是資料庫的內容,來增加資料庫的內含欄位和訊息,希望能夠替資料採礦工作者提供一個節省精力的方向,而且做為未來更多研究的基礎。 關鍵字:資料採礦、函數映射、資料庫加值。
3

資料採礦中的資料純化過程之效果評估

楊惠如 Unknown Date (has links)
數年來台灣金控公司已如雨後春筍般冒出來,在金控公司底下含有產險公司、銀行、證券以及人壽公司等許多金融相關公司,因此,原本各自擺放於各子公司的資料庫可以通通整合在一起,當高階主管想提出決策時可利用資料庫進行資料採礦,以獲取有用的資訊。然而資料採礦的效果再怎麼神奇,也必須先有一個好的、完整的資料庫供使用,如果資料品質太差或者資料內容與研究目標無關,這是無法達成完美的資料採礦工作。 透過抽樣調查與函數映射的方法使得資料庫得以加值,因此當有目標資料庫與輔助資料庫時,可以利用函數映射方法使資料庫整合為一個大資料庫,再將資料庫中遺失值或稀少值作插補得到增值後的資料庫。在此給予這個整個流程一個名詞 ”Data SPA(Data Systematic Purifying Analysis)”,即「資料純化」。在本研究中,主要就是針對純化完成的資料進行結構的確認,確認經過這些過程之後的資料是效用且正確的。在本研究採用了橫向評估、縱向評估與全面性評估三種方法來檢驗資料。 資料純化後的資料經過三項評估後,可以發現資料以每個變數或者每筆觀察樣本的角度去查驗資料時,資料的表現並不理想,但是,資料的整體性卻是相當不錯。雖然以橫向評估和縱向評估來看,資料純化後的資料無法與原本完整的資料完全一致,但是透過資料純化的過程,資料得以插補且欄位得以擴增,這樣使得資料的資訊量增加,所以,資料純化確實有其效果,因為資訊量的增加對於要進行資料採礦的資料庫是一大助益。 / For the past few years, Taiwan has experienced a tremendous growth in its financial industry namely in banks, life and property insurances, brokerages and security firms. Needless to say the need to store the data produced in this industry has become an important and a primary task to accomplish. Originally, firms store the data in their own database. With the progressive development of data management, the data now can be combined and stored into one large database that allows the users an easy access for data retrieval. However, if the quality of the data is questionable, then the existence of database would not provide much insightful information to the users. To tackle the fore mentioned problem, this research uses functional mapping combining the goal and auxiliary database and then imputes the missing data or the rare data from the combined database. This whole process is called Data Systematic Purifying Analysis (Data SPA). The purpose of this research is to evaluate whether there is any improvement of the structure of the data when the data has gone through the process of systematic purifying analysis. Generally the resulting data should be within good quality and useful. After the assessments of the data structure, the behavior of the data with respect to their added variables and observations is unsatisfactory. However the manifestation of the data as a whole has seen an improvement. The modified database through Data SPA has augmented the database making it more efficient to the usage of data mining techniques.

Page generated in 0.0173 seconds