• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

改良式協同過濾推薦系統之架構與評估 / A framework and evaluation of recommendation system using modified collaborative filtering method

張玉佩 Unknown Date (has links)
協同過濾是電子商務中最常被使用也是最成功的推薦技術,但隨著電子商務的發展,網站使用者與商品數也迅速成長,使得使用者相關資料稀疏(Data sparsity)而嚴重影響推薦品質。對於新使用者與新商品,協同過濾也無法提供準確的推薦。為改善以上問題,本研究使用Lemire與Maclachlan (2005)所提出的Slope One演算架構及資料探勘方法中的單純貝式分類器(Naïve bayes classifier)來解決資料稀疏性和冷開始(Cold-start)問題。同時,考量到運算成本,將推薦系統架構分為離線預處理階段和線上預測階段,以避免當使用者數目和商品越來越大時運算成本超過實際可接受程度。 本研究採用MovieLens資料庫的資料集,包含943位使用者與1,682部電影,共10萬筆評比資料,評比分數範圍從1到5分,其中每位使用者至少評比20部以上電影。實驗評估方法則採用平均絕對誤差(MAE)來計算本研究的推薦系統對消費者喜好預測的準確度。 本研究希望所提出的個人化推薦系統能改善傳統協同過濾推薦系統的推薦品質,減少資料稀疏所造成的推薦誤差,更準確的推薦使用者感興趣的物品,以幫助使用者更有效率的進行線上消費,提高顧客滿意度與忠誠度,也提升電子商務網站營業效益。
2

基於內隱資料之協同過濾推薦系統研究與實作 / Research and application for collaborative filtering recommendation system using implicit datasets

張遠耀, Chang, Yuan Yao Unknown Date (has links)
近年來電子商務蓬勃發展,嚴重侵蝕實體通路業績,因此線下服務提供者更應善用資料科學技術,找出顧客未被滿足之需求,進而提供優質服務,其中脫穎而出的關鍵非推薦系統莫屬。 本研究以運用計算產品相似程度的「項目導向協同過濾」和計算使用者與商品蘊含特徵的「潛在因子」兩大類「協同過濾」推薦方法為核心,藉由實體零售通路累積的顧客消費紀錄,驗證「協同過濾」方法較傳統熱門商品推薦機制更符合消費者偏好,且「協同過濾」方法能達到完全個人化推薦之目標。 本研究使用的實體零售通路消費紀錄源於顧客真實購物行為,收集成本低,且數據量龐大,然而此類資料無法直接傳達顧客對於商品的喜好與滿足程度,因此被稱之為「內隱資料」,針對內隱資料處理上,本研究選擇以消費次數取代金額,提出短期重複行為計算閾值概念,以時間修正權重處理可能的偏好轉變與習慣性消費。 模型評估方面,透過強調推薦順序的「平均排名百分比」作為指標,利用傳統熱門商品推薦為基準,比較「項目導向協同過濾」和「潛在因子」兩大類「協同過濾」方法推薦品質的優劣,本研究顯示兩大類「協同過濾」方法達到的推薦品質皆優於熱門商品推薦,且前者遞交的推薦清單為完全個人化,運用本研究發展的推薦系統,將其導入與應用,讓線下服務提供者在與每位顧客接觸的關鍵時刻,能在洞悉對方需求的利基上,提供令顧客滿意的商品與服務,創造獨特且難以模仿的競爭優勢。
3

基於社會網路的拍賣平台專家推薦系統之研究

黃泓翔 Unknown Date (has links)
在人們的日常生活中,推薦是很普遍的一種社會行為,它使人們不必親自去體驗所有的事物,可透過別人的經驗來得知一件事情或商品的好或壞。隨著科技的快速發展與網際網路的普及,電子商務已逐漸的融入社會,成為人類生活中不可或缺的一部分。然而在網路上過量的資訊,使得個人在資訊的使用與搜尋上面臨極大的挑戰,更加刺激了對於推薦資訊的需求,因此許多推薦技術相繼提出,推薦系統也應運而生,不僅使得推薦的範圍擴大了,推薦的型態也更為豐富多元;同時,在近年電子商務的發展中,對於個人化與顧客導向服務的愈益重視,使得推薦系統逐漸成為一種必要的線上服務。 在眾多的推薦技術之中,協同過濾推薦方法是最成功且最常被採用的推薦技術之一,許多台灣的拍賣平台上也都有採用類似概念的推薦系統,像是Yahoo!拍賣、露天拍賣上的評價機制均屬此類。然而,現行的拍賣評價機制都沒有採用社會網路的技術,本研究希望透過協同過濾與社會網路的結合,讓評價機制更趨於完備。 本研究以台灣最大的拍賣網站Yahoo!為例,蒐集了44萬筆交易記錄,並以推薦網(ReferralWeb)系統的矩陣方法為基礎,找出人與商品的關係、商品與類別的關係、人與人的關係,建立起一個社會網路,讓使用者可查詢特定領域的專家,並與之交易。除此之外,也可直接詢問專家關於商品的資訊或購買技巧。透過這樣的機制,希望能降低消費者在購買商品時所產生的交易糾紛,讓人們在網路上的購物體驗能變得更好。 / Nowadays, recommendation is a common social behavior between people. People can evaluate things or commodities from others’ experience and opinions instead of their own experiences. Along with the development of technology and Internet today, E-commerce has become an indispensable part of human life. However, due to the overloaded information, people face a fantastic challenge when accessing and searching on the Internet. Therefore, many methods of recommendation were proposed, and systems of recommendation are to come with the tide of fashion. In addition, the development of E-commerce emphasized on personalization and customer-oriented services more in recent years, which make recommendation system becomes a necessary on-line service gradually. Collaborative Filtering is the most successful and adopted one in numerous recommendation methods. There are many auction platforms in Taiwan also use recommendation systems, such like "Yahoo Auction", "Ruten Auction", etc. However, the previous mentioned recommendation mechanisms haven’t used Social Network technology; this study will propose an recommendation system which combines Collaborative Filtering and Social Network technology. This research collects 440,000 transaction data from the Yahoo auction platform, which is the biggest auction website in Taiwan. Based on the matrix method of ReferralWeb system(Shah, 1997), this research would like to build up the matrix of relationships between Person-Commodity, Commodity-Category, and Person-Person. Based on the three matrixes, finally builds up a Social Network. In the Social Network, users can enquire experts refer to the specific category of commodity, and then refer to the shops which the experts like or directly ask them the commodity information and purchase skill. Relying on the mechanism proposed by this research, our goals are to reduce the transaction disputes arising from consumers purchase commodities, and to let people have better experiences in on-line shopping.
4

學術研究論文推薦系統之研究 / Development of a Recommendation System for Academic Research Papers

葉博凱 Unknown Date (has links)
推薦系統為網站提升使用者滿意度、減少使用者所花費的時間並且替網站提供方提升銷售,是現在網站中不可或缺的要素,而推薦系統的研究集中在娛樂項目,學術研究論文推薦系統的研究有限。若能給予有價值的相關文獻,提供協助,無疑是加速進步的速度。 在過去的研究中,為了達到個人化目的所使用的方法,都有不可避免或未解決的缺點,2002年美國研究圖書館協會提出布達佩斯開放獲取計劃(Budapest Open Access Initiative),不要求使用者註冊帳號與支付款項就能取得研究論文全文,這樣的做法使期刊走向開放的風氣開始盛行,時至今日,開放獲取對學術期刊網站帶來重大的影響。在這樣的時空背景之下,本研究提出一個適用於學術論文之推薦機制,以FP-Growth演算法與協同過濾做為推薦方法的基礎,消弭過去研究之缺點,並具個人化推薦的優點,經實驗驗證後,證實本研究所提出的推薦架構具有良好的成效。 / Recommendation system is used in many field like movie, music, electric commerce and library. It’s not only save customers’ time but also raise organizations’ efficient. Recommended system is an essential element in a website. Some methods have been developed for recommended system, but they are primarily focused on content or collaboration-based mechanisms. For academic research, it is very important that relevant literature can be provided to researchers when they conduct literature review. Previous research indicates that there are inevitable or unsolved shortcomings in existing methods such as cold starts. Association of Research Libraries purpose “Budapest Open Access Initiative” that is advocate open access concept. Open access means that users can get full paper without register and pay fee. It’s a major impact to academic journal website. In this space-time background, we propose a hybrid recommendation mechanism that takes into consideration the nature of recommendation academic papers to mitigate the shortcomings of existing methods.

Page generated in 0.0238 seconds