1 |
一個卡特蘭等式的組合證明 / A Combinatorial Proof of a Catalan Identity劉映君 Unknown Date (has links)
在這篇論文裡,我們探討卡塔蘭等式 (n + 2)Cn+1 = (4n + 2)C2 的證明
方法。以往都是用計算的方式來呈現卡塔蘭等式的由來,但我們選擇用組合
的方法來證明卡塔蘭等式。
這篇論文主要是應用 Cn+1 壞路徑對應到打點 Cn 好路徑以及 Cn+1 好路
徑對應到打點 Cn 壞路徑的⽅式來證明卡特蘭等式。 / In this thesis, we give another approach to prove Catalan identity,
(n + 2)Cn+1 = (4n + 2)C2. In the past we use the method of computation to show Catalan Identity, in this thesis we choose a combinatorial proof of the Catalan identity.
This thesis is primary using the functions from Cn+1 totally bad path to Cn dotted good path, and from Cn+1 good path to Cn dotted totally bad path.
|
Page generated in 0.0176 seconds