1 |
同調風險測量值在保證給付投資型保險準備金提存之應用鄭宇宏 Unknown Date (has links)
Artzner等學者在1999年提出風險測量值應具備同調(coherent)性質,然而,涉險值並未能完全符合。本文針對Wirch & Hardy(1999)提出滿足Artzner et al.(1999)所定義同調性質之風險量化指標如條件尾端期望值(Conditional Tail Expectation;又稱尾端涉險值,Tail-VaR)以及危險比例(proportional hazards;PH)、雙重次方(dual power;DP)變形函數(distortion function)等風險衡量方法作探討,參考MGWP(1980)、Boyle & Hardy(1997)、Hardy(2000)、Yang(2001)、Wilkie & Waters & Yang(2003)對於附保證給付之投資連結型保險契約提存準備金的方法,將其應用到保險公司所發行的附保證給付之風險量化上,同時比較其與涉險值之差異。其中之數值分析將以附最低死亡保證給付(Guarantee Minimum Death Benefit)之變額年金,以及附保證年金選擇權(Guaranteed Annuity Options)之單位連結(Unit-linked)保險商品作為範例,分別以台灣、英國兩地的投資環境為背景,檢視其附保證給付之投資型保單可能面臨的風險暴露,提供保險公司作為提存投資型商品保證給付部分之責任準備金參考。 / In this paper we introduce the properties of a coherent risk measure(Artzner et al(1999)). The risk measure of Value at Risk that does not adhere to the consistency requirements is discussed. We consider the coherent risk measures of conditional tail expectation(also known as Tail-VaR), proportional hazards and dual power distortion functions outlined by Wirch and Hardy(1999). MGWP(1980),Boyle and Hardy(1997),Hardy(2000),Yang(2001),Wilkie, Waters and Yang(2003)use VaR and the latter two papers also apply conditional tail expectation to reserve for investment-linked contracts with guaranteed risk. Instead, we apply the coherent measures to reserve two different types of guarantee:guarantee minimum death benefit and guaranteed annuity options attached to variable annuity contracts and unit-linked contracts separately. In addition, the comparison of the numerical results for VaR risk measure and coherent risk measure are analyzed.
|
Page generated in 0.029 seconds