1 |
對平滑直方圖的貝氏與準貝氏方法之比較 / A comparison on Bayesian and quasi-Bayesian methods for Histogram Smoothing彭志弘, Peng, Chih-Hung Unknown Date (has links)
針對具有多項分配(multinomial distribution)母體的類別資料,貝氏分析通常採取Dirichlet分配作為其先驗分配(prior distribution),但在很多實際應用時,卻會遭遇困難;例如,當我們欲推估各年齡層佔總勞動力人口之比例時,母體除具多項分配外,其相鄰類別之比例亦相對接近;換言之,此時母體為具有平滑性(smooth)的多項分配,若依然採用Dirichlet分配作為其先驗分配,則會因為Dirichlet分配本身不具有平滑的特性,因而在做貝氏分析時會產生困擾。對這個難題Dickey and Jiang於1998年提出一個解決之道,他們的理論是對Dirichlet分配作適當之調整,將經過線性轉換後之Dirichlet分配稱為過濾後Dirichlet分配(filtered-variate Dirichlet distribution),以過濾後Dirichlet分配作為調整後之先驗分配。對於Dickey and Jiang提出的方法,我們重新以蒙地卡羅法(Monte Carlo method)求出貝氏解,同時也嘗試以類似Makov and Smith (1977)和Smith and Makov (1978)對混合分配(mixture distribution)所用之準貝氏方法(quasi-Bayesian method)來逼近貝氏解。而本文將由電腦模擬的方式,探討貝氏方法與準貝氏方法之執行結果,並且考察準貝氏方法之收斂行為,對準貝氏方法的使用時機提出建議。
|
2 |
多項分配之分類方法比較與實證研究 / An empirical study of classification on multinomial data高靖翔, Kao, Ching Hsiang Unknown Date (has links)
由於電腦科技的快速發展,網際網路(World Wide Web;簡稱WWW)使得資料共享及搜尋更為便利,其中的網路搜尋引擎(Search Engine)更是尋找資料的利器,最知名的「Google」公司就是藉由搜尋引擎而發跡。網頁搜尋多半依賴各網頁的特徵,像是熵(Entropy)即是最為常用的特徵指標,藉由使用者選取「關鍵字詞」,找出與使用者最相似的網頁,換言之,找出相似指標函數最高的網頁。藉由相似指標函數分類也常見於生物學及生態學,但多半會計算兩個社群間的相似性,再判定兩個社群是否相似,與搜尋引擎只計算單一社群的想法不同。
本文的目標在於研究若資料服從多項分配,特別是似幾何分配的多項分配(許多生態社群都滿足這個假設),單一社群的指標、兩個社群間的相似指標,何者會有較佳的分類正確性。本文考慮的指標包括單一社群的熵及Simpson指標、兩社群間的熵及相似指標(Yue and Clayton, 2005)、支持向量機(Support Vector Machine)、邏輯斯迴歸等方法,透過電腦模擬及交叉驗證(cross-validation)比較方法的優劣。本文發現單一社群熵指標之表現,在本文的模擬研究有不錯的分類結果,甚至普遍優於支持向量機,但單一社群熵指標分類法的結果並不穩定,為該分類方法之主要缺點。 / Since computer science had changed rapidly, the worldwide web made it much easier to share and receive the information. Search engines would be the ones to help us find the target information conveniently. The famous Google was also founded by the search engine. The searching process is always depends on the characteristics of the web pages, for example, entropy is one of the characteristics index. The target web pages could be found by combining the index with the keywords information given by user. Or in other words, it is to find out the web pages which are the most similar to the user’s demands. In biology and ecology, similarity index function is commonly used for classification problems. But in practice, the pairwise instead of single similarity would be obtained to check if two communities are similar or not. It is dislike the thinking of search engines.
This research is to find out which has better classification result between single index and pairwise index for the data which is multinomial distributed, especially distributed like a geometry distribution. This data assumption is often satisfied in ecology area. The following classification methods would be considered into this research: single index including entropy and Simpson index, pairwise index including pairwise entropy and similarity index (Yue and Clayton, 2005), and also support vector machine and logistic regression. Computer simulations and cross validations would also be considered here. In this research, it is found that the single index, entropy, has good classification result than imagine. Sometime using entropy to classify would even better than using support vector machine with raw data. But using entropy to classify is not very robust, it is the one needed to be improved in future.
|
Page generated in 0.0299 seconds