1 |
完全C邊混合超圖的著色多項式 / The Chromatic Polynomial of A Mixed Hypergraph with Complete C-edges吳仕傑 Unknown Date (has links)
在這篇論文中,我們利用分離-收縮法(splitting-contraction algorithm)獲得一個擁有完全C邊以及循環D邊特性的圖之著色多項式。 假如一個混合超圖在點集合上有主要的循環, 使得所有的C邊和D邊包含一個主循環(host cycle)的連接子圖, 則稱此圖為循環的(circular)。 對於每個l≧2, 所有連續l個點會形成一個D邊時, 我們把D記作D_l。 如此一來, 超圖(X,Φ,D_2)就是圖論中n個點的普通循環。
我們先觀察擁有完全C邊和循環D邊的超圖, 利用分離-收縮法的第一步, 找到遞迴關係式並且解它。 然後我們就推廣到一般完全C邊及循環D邊的超圖。 / In this thesis, we obtain the chromatic polynomial of a mixed hypergraph with complete C-edges and circular D-edges by using splitting-contraction algorithm. A mixed hypergraph H=(X,C,D) is called circular if there exists a host cycle on the vertex set X such that every C-edge and every D-edge induces a connected subgraph of the host cycle. For each l≧2, we denote D by D_l if and only if every l consecutive vertices of X form a D-edge. Thus the mixed hypergraph (X,Φ,D_2) is a simple classical cycle on n vertices.
We observe first a mixed hypergraph with complete C-edges and D_2. By the first step of the splitting-contraction algorithm, we can find out the recurrence relation and solve it. Then we generalize the mixed hypergraph with complete C-edges and circular D-edges.
|
Page generated in 0.0217 seconds