1 |
應用大數據於杭州市房地產價格模型之建立 / The Application of Big Data Analytics on Real Estate Price Model of Hangzhou郁嘉綾, Yu, Cia-Ling Unknown Date (has links)
互聯網的發展與近年來數據平台受到公私部門重視,資訊的取得與流通變得便捷,中國房地產文化目前有別於台灣,尚無實價登錄機制且地域面積廣大,傳統估價模型可能無法直接應用,面對房地產背後眾多的影響因素,本研究將預測建模目標放在泡沫化尚不嚴重且較具有潛力的中國新一線城市杭州市,自新浪二手房網爬取杭州市房地產數據,並自國家統計局取得各地區行政支出數據,作為實證分析資料。結合自動程序爬蟲抓取數據、統計分析與機器學習方法,期望對中國房地產建立一混合非監督式與監督式學習之模型。
在分群結果之後建構模型採用之技術為C5.0、三層CHAID、五層CHAID與Neural Network,挑選出最適合的模型為使用混合模型後的C5.0決策樹方法,達到降低變數維度亦提升或達到相當的預測準確率的雙贏目標,模型中行政地區、面積、總樓層為最頻出現的重要變數。
另外透過集群分析於行政支出的應用,發現2016年度杭州市投入的行政支出集中於余杭區、蕭山區、濱江區,成為賣屋及購屋者的第二項決策標準。 / In recent years, with the growth of the Internet and the importance of data platform on public sector and private sector. Getting and sharing information are made easily. The culture of real estate in China is different from Taiwan. For instance, there is no actual house price registration system. Furthermore, traditional estimate model may not be directly applicable to China which has the vast geographical area of the mainland. There are many factors to influence house price model. This study focus on Hangzhou city. Because the burst of real estate bubbles is not serious as first-tier cities and it is one of new first-tier cities in China. The research data were crawler from Sina second-hand housing website and National Bureau of Statistics. By using auto web crawler skill, statistical analysis, and machine learning method to build a real estate model in China, which was combining unsupervised learning method with supervised learning method.
After clustering Hangzhou second-hand housing data, this study used C5.0, three layers Chi-Square Automatic Interaction Detector(CHAID), five layers CHAID, and Neural Network(NN). The study goal are both reducing dimension and getting better forecast accuracy. Choosing clustering- C5.0 model as appropriate house price model to achieve win-win situation after comparing final result. Administrative region, area, and total floor are the top three high frequency influential factors.
Applying Clustering Analysis to administrative expenses data in Hangzhou, the study found that the government resource focus on Yuhang, Xiaoshan, and Binjiang. It can be the second decision-making criterion for house sellers and house buyers.
|
2 |
機器學習與房地產估價 / Machine learning and appraisal of real estate蔡育展, Tsai, Yu Chang Unknown Date (has links)
近年來,房地產之投資及買賣廣為盛行,而房地產依舊為人們投資的方向之一。屬於人工智慧範疇之類神經網路,其具有學習能力,可以進一步的歸納推演所要預估的結果,也適合應用於非線性的問題中,但以往類神經網路的機器學習模型,皆採用中央處理器(CPU)進行運算,在計算量龐大時往往耗費大量時間於訓練上。而圖形處理器(GPU)之崛起,將增進機器學習的速率。
本研究利用穩健學習程序搭配信封模組的概念,建立一類神經網路系統,利用GPU設備及機器學習工具–Tensorflow實作,針對民國一零四年之台北市不動產交易之住宅資料,並使用1276筆資料,隨機選取60%資料作為訓練範例並分別進行以假設有5%為可能離群值及沒有之情況做學習,並選取影響房地產價格之11個變數做為輸入變數,對網路進行訓練,實證結果發現類神經網路的速度有顯著的提升;且在假定有5%離群值之狀況下學習有較好的預測水準;另外在對資料依價格進行分組後,顯示此網路在對中價位以上的資料有較好的預測能力。就實務應用方面,藉由類神經網路適合應用於非線性問題的特性,對未來房地產之估價系統輔助做為參考。 / Real estate investment and transcation prevails in recent year. And it is still one of the choices for people to invest. The Neural Network which belongs to the category of Arificial Intelligence has the ability to learn and it can deduce to reach the goal. In addi-tion, it is also suitable for the application of non-linear problems. However, the machine learning model of the Neural Network use CPU to operate before and it will always spend a lot of time on training when the calculation is large.However, the rise of GPU speeds up the machine learing system.
This study will implement resistant learning procedure with the concept of Enve-lope Bulk focus to built a Neural Network system. Using TensorFlow and graphics pro-cessing unit (GPU) to speed up the original Arificial Intelligence system. According to the real estate transaction data of Taipei City in 2015, 1276 data will be used. We will pick 60% of the data in a random way as training data of our two experiment , one of it will assume that there are 5% of outlier and another won’t. Then select 11 variables which may impact the value of real estate as input. As the experiment result, it makes the operation more efficient and faster , training of the Neural Network really speed up a lot. The experiment which has assume that there are 5% of outlier shows the better effect of predicting than the another. And we got a better prediction on the part of the higher price after we divided the data into six groups by their price.In the other hand, Neural Network is good at solving the problem of non-linear. It can be a reference of the sup-port system of real estate appraisal in the future.
|
3 |
類神經網路應用於房地產估價之研究 / The application of neural network to real estate appraisal高明志, Kao, Ming-Chih Unknown Date (has links)
估價於房地產市場實扮演著一不可或缺的角色,精確的估價不僅可提供消費者正確極充分的購屋資訊,亦為政府擬定政策方針之基礎。由於台灣房地產市場為一不完全市場,消費者在購屋的同時更常因資訊的不健全而遭受不必要之損失,因此精確及流通之估價資訊實為健全台灣房地產市場之首務。
鑑於過去估價技術仍未成熟,所佔之房價常無法令人信服。本研究欲以類神經網路之功能,將其原理應用於房地產估價上,試圖解決過去估價方法本身之缺失,並作為估價人員輔助之工具。本研究主要以倒傳遞及理解倒傳遞類神經網路與特徵價格法進行公證比較分析,並以特徵價理論為基礎,利用類神經網路得出影率房地產價格更具代表性之因素,以做為未來建立房地產估價輔助系統之參考。
為了解不同的資料型態是否會使類神經網路有不同的學習效果,本研究將資料分為四組實驗設計,分別對不同的資料型態進行測試,研究結果顯示類神經網路對於資料型態較為敏感,其中又以理解倒傳遞類神經網路為最,使得其在預測能力上易受異常點或極端值的影響,而有好壞差異較大的情況。即類神經網路之學習效果端視資料是否具代表性而定。
|
Page generated in 0.0122 seconds