1 |
遞迴支持向量迴歸資料縮減法 / Recursive SVR data reduction江政舉 Unknown Date (has links)
近年來,支持向量機(SVM, Support Vector Machine)及支持向量迴歸(SVR, Support Vector Regression)已被廣泛的應用在分類及預測上的問題,然而實務上常見資料過於龐大,而導致需要較長的計算時間及較高的計算成本。為了解決這樣的問題,Zhang等人(2006)及Chen, Wang與Cao(2008)發展兩種類型的資料縮減方法。前者為減少變數數量的遞迴支持向量機(RSVM, Recursive Support Vector Machine),藉由交叉驗證以及定義所謂的貢獻因子來找出重要的變數,而考慮僅利用重要的變數做分類。後者的方法稱為DSKR(Direct Sparse Kernel Regression),考慮在支持向量迴歸中,僅選取部份支持向量個數做預測,以達到資料縮減效果。本研究將遞迴支持向量機的方法延伸至支持向量迴歸上,此法稱為遞迴支持向量迴歸(RSVR, Recursive Support Vector Regression),藉由交叉驗證以及依據決策函數來定義各變數的貢獻因子,藉此選取出重要的變數,並且保留這些重要變數來做後續分析與預測。本研究將此方法應用於兩組實際的化學資料:Triazines及Pyrim,我們發現資料被大幅縮減,僅有六分之一至五分之一的變數被保留。而資料縮減後的預測效果,與利用整組原始資料來進行支持向量迴歸的結果相近,但較DSKR的結果差。
關鍵字:支持向量機,支持向量迴歸,資料縮減
|
Page generated in 0.0245 seconds