• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

資產配置,波動率與交易密集度 / Asset allocation, Volatility and Trading Intensity

張炳善, Chang, Ping Shan Unknown Date (has links)
本文旨在探討具有捕捉交易密集度特性的波動率測度模型是否能幫助投資者改 善其資產配置的決策。因此,本文分別考量了利用兩種不同價格抽樣方式所計算 出來的實現波動率 (realized volatility) 模型: (1) 日曆時間抽樣法 (calendar time sampling scheme) 與 (2) 交易次數時間抽樣法 (transaction time sampling scheme)。相較於另一廣為應用的一般化自我迴歸條件異質變異 (Generalized Autoregressive Conditional Heteroskedasticity) 模型而言,這兩種實現波動率模型的優點除了在於它們可以捕捉日內資產報酬率的動態變化之外,交易次數時間抽樣法更可以另外捕捉市場的交易密集度。因此利用交易次數間抽樣法所計算出的實現波動率相對提供給投資者較多的訊息。本文利用了West, Edison and Cho (1993) 所提出的資產組合期望效用模型衡量三種波動率測度的預測績效:(1) 實現波動率 - 日曆時間抽樣法 (2) 實現波動率 - 交易次數時間抽樣法 (3) 指數型一般化自我迴歸條件異質變異 (Exponential Generalized Autoregressive Conditional Heteroskedasticity)。我們的實證結果發現,只有在投資者風險趨避係數越小的條件下,此三種波動率測度模型兩兩之間才有較大的期望效用差距;另外,有趣的是,當市場存在異常的交易波動現象時,交易次數時間抽樣法下的實現波動率所產生的期望效用值總是不輸給另外兩種波動率測度模型的結果。 / This paper examines whether volatility measures that account for trading intensity would help investors make better decisions in their asset allocation. Specifically, we consider two versions of realized volatility (RV), namely, one (RV-C) constructed by regular calendar time sampling, and the other one (RV-T) constructed by transaction time sampling. Comparing to models in the GARCH family, both of these two RVs can capture intraday variations of asset return dynamics. In particular, the RV-T incorporates intraday trading intensity, and hence provides even more valuable information for investors. With the utility-based approach developed by West, Edison, and Cho (1993), we compare the predictive performance of RV-C, RV-T, and the EGARCH model in terms of utility generated with each of these three volatility measures. Our empirical results show that the three measures differ from each other mostly when investors are less risk-averse. Most interestingly, the time-deformed RV-T weakly dominates the RV-C and the EGARCH model when the markets are extremely volatile.

Page generated in 0.0129 seconds