1 |
附有最低保證給付投資型保險之評價與分析曾柏方, Tseng, Po-fang Unknown Date (has links)
有鑑於附有最低保證給付投資型保險期末現金流量與選擇權如出一轍,是以應用平賭訂價理論(The Martingale Pricing Method)嵌入HJM利率模型,對隨機利率下附有最低保證給付投資型保險進行評價。並對繳費方式與利率型態兩議題所構成四種類型附有最低保證給付投資型保險作實地數據模擬與評價,以及敏感度分析。
研究結果可以歸納為四點結論。
(1) 單就附有最低保證給付投資型保險簡化版(忽略期中死亡理賠與期滿生存機率)而言:
可視為是最低保證給付折現與以之為履約價的買權組合。因此,當影響因子僅與買權有相關性時,附有最低保證給付投資型保險與理論買權的敏感度分析結果,如出一轍。連動標的期初價格與波動度變動於附有最低保證給付投資型保險影響便是實證。
(2) 延續上點論述衍生:
當影響因子同時對買權與附有最低保證給付折現具有相關性時,由於買權佔整個保險價值比重過低,是以主要影響力皆來自附有最低保證給付的變動。附有最低保證給付與固定利率折現因子變動對於保險價值影響,即反應此結果。
(3) 分別就繳費方式不同下,投保年齡與投保期限變動對於附有最低保證給付投資保險的影響而言:
躉繳型繳費方式下,由第二點結論可得,投保期限越長保費越低,是以當投保年齡越大,期中死亡率提高,且期間短的保費較高的情況下,投保年齡變動對於附有最低保證給付投資型保險影響為正向;分期繳型繳費方式下,由於條款設定不同,無法與躉繳型一概而論,反映在投保期間越長保單價值與保費皆增加,但若是比較其增加的幅度(二階條件小於零)逐漸減少,倒是與躉繳型投資保險投保期間與保費關係意思相同,只是呈現方式不同。分期繳型投資型保險保單價值與投保年齡關係,從投保期限與保費關係以及高年齡層死亡率較高,可以得知,隨著投保年齡的增加,分期繳型投資保險中因為死亡理賠的現金流量產生機會提高,而此部分期間短保單價值較低,是以投保年齡與保單價值呈現反比關係,但是保單價值平準化後的保費,源於平準因子每期存活率因投保年齡增加而減少,造成投保年齡越高,保費也越高。
(4) 就性別而言:
躉繳型附有最低保證給付投資保險,由於女性相較於男性死亡率較低,容易取得期間較長的期滿保證金,而此部分價值較低,是以女生保費較男生便宜;分期繳型附有最低保證給付投資保險,則是相反的表現,由於此部分價值較高,是以女性的保險價值高於男性,同時因女性平準因子中的存活率也比男性高,是以每期所要繳交的保費也比男性低廉。
(5) 就利率型態而言:
隨機利率下躉繳型投資型保險與固定利率下躉繳型投資保險相較,便宜許多,主要是因為利率型態為隨機,且期初利率期間結構打破水平狀態的假設,真實反應正常期初利率期間結構(Normal Interest Rate Term Structure),是以評價出的保費較固定利率型態下的保費低廉,甚至於分期繳型附有最低保證給付投資保險,在隨機利率下,隨著投保期限增加,保費反而下降。
|
2 |
最低保證給付人壽保險附約之風險分析 / Risk analysis for guaranteed minimum benefit life insurance riders李一成 Unknown Date (has links)
保險人因提供最低保證給付之投資型商品,使公司亦涉入投資風險。本研究旨在探討最低保證給付人壽保險附約之風險分析。首先利用隨機模型建構投資者帳戶價值的動態過程,進而推導出在未來時點帳戶發生餘額不足之機率及其所符合的偏微分方程式。並藉由數值方法-有限差分法,求出投資帳戶餘額不足之機率。最終,以不同的參數選取之下,進行敏感度分析,探討參數值的設定對於帳戶發生餘額不足之機率的影響。本研究結果可以提供保險公司與監理機關,作為日後發行保證給付商品時,一項風險管理上的考慮因素。
研究結果可以歸納為兩點結論:
1. 在市場因素中,投資帳戶連結之標的報酬率與帳戶餘額不足機率呈現反向變動,而波動度則是與帳戶餘額不足機率呈現正向變動。在兩因素同時考慮下,當報酬率愈高且波動度愈低,投資帳戶發生餘額不足的機率會愈低。當波動度愈高且報酬率愈低時,帳戶餘額不足機率則會愈高。其兩者的力量會相互抵銷,對投資帳戶餘額不足之機率的影響需視何者的力量較強而定。
2. 在條款設計的因素中,保證附約相關費用率、保證提領比率與保證提領期間對於投資帳戶發生餘額不足機率的影響皆呈現正向的關係。而投資帳戶期初的價值則與帳戶餘額不足機率呈現反向變動。其中保證提領比率對於投資帳戶的價值影響最大,其帳戶餘額不足機率之變動百分比相較於其他因素而言,變動幅度較大,範圍皆大於4%以上,甚至高達37.11%。 / Insurers have investment risks because they issue the guaranteed minimum benefit life insurance riders. Therefore, the purpose of this thesis is analyzing the risk for the riders. In the context, we implement numerical PDE solution to compute the ruin probability of separate account which is the probability that guaranteed minimum benefit life insurance riders will lead to financial insolvency under stochastic investment returns. Moreover, we will do sensitivity analyses to discuss the two aspects, market factors and contract designs, how to influence the ruin probability.
Finally, we conclude two main results:
1. For market factors, the rate of investment return is negatively related to ruin probability; however, the volatility is positive correlation.
2. For contract designs, the results show negative correlation between ruin probability and insurance fee, withdrawals, and withdrawal period. But the initial account value shows positive correlation.
|
Page generated in 0.0142 seconds