1 |
穩健型最適避險比率估計-以台灣市場為例 / Robust estimation of the optimal hedge ratio黃信凱, Huang, Hsin Kai Unknown Date (has links)
Because on the method of Harris and Shen (2003), we implement the robust estimator of optimal hedge ratio in Taiwan stock market. By using the Taiwan Stock Index and Taiwan Stock Index Futures, we used the robust estimation of optimal hedge ratio. We use two estimators, the rolling window model and the exponentially weighted moving average (EWMA), to estimate the robust optimal hedge ratio. We also compare the hedging effectiveness of the robust hedge ratios and the traditional least- squared hedge ratios. We find that the volatility of the hedged portfolio using robust optimal hedge ratio is substantially lower than that of the portfolio using the traditional hedge ratios. With the less excessive volatility, the transaction cost decrease substantially, and the cost of rebalancing portfolio is lower as well. / Because on the method of Harris and Shen (2003), we implement the robust estimator of optimal hedge ratio in Taiwan stock market. By using the Taiwan Stock Index and Taiwan Stock Index Futures, we used the robust estimation of optimal hedge ratio. We use two estimators, the rolling window model and the exponentially weighted moving average (EWMA), to estimate the robust optimal hedge ratio. We also compare the hedging effectiveness of the robust hedge ratios and the traditional least- squared hedge ratios. We find that the volatility of the hedged portfolio using robust optimal hedge ratio is substantially lower than that of the portfolio using the traditional hedge ratios. With the less excessive volatility, the transaction cost decrease substantially, and the cost of rebalancing portfolio is lower as well.
|
2 |
期貨最適避險比率之實證研究-時間數列分析 / The optimal hedge ratio in future market - time series analysis王秀菁, Wang.Shiu Ching Unknown Date (has links)
在充滿不確定性之交易市場中,每位交易者會盡量利用所擁有之資訊,在
市場有干擾(如,風險性資產供給之不確定性、個人偏好不同、個人面對
之稅負環境不同等)之情形下,市場會顯露出部份私人訊息,故交易者亦
會經由對價格和交易量之觀察習得訊息;擁有私人訊息之交易者稱為消息
靈通者(Informed),未擁有私人訊息而只能經由觀察價格而習(learn )得
訊息之交易者稱為消息不靈通者(Uninformed),他們二者之差異在於他們
是否願花成本或資源以購買訊息。本文係在干擾理性預期模型下,利用所
設定之特殊效用函數--絕對風險規避效用函數及假設隨機變數為多元常態
分配,探討市場有干擾情形下,在第一期有私人訊息而在第二期有公開訊
息揭露之不對稱訊息模型中價格之資訊性,分別分析了公告訊息和私人訊
息之干擾程度、風險性資產供給之不確定及購買訊息人數對二期價格資訊
性之影響。在所設定的模型有解下,本文利用這些影響因素對公告訊息和
私人訊息在總合需求計劃部位 (Position)的彈性說明二期價格資訊性。
同時文中亦探討購買訊息人數之內生決定,顯示了公告訊息之揭露會修正
交易者之看法而減少私人蒐集訊息之誘因。
|
3 |
股價指數期貨最適避險比率與避險效益之衡量:結構轉換模型應用朱明輝, Chu, Ming-huei Unknown Date (has links)
隨著國際金融市場的開放與金融商品的多元化,投資人所面對的投資機會增加,相對地也面臨更多金融市場波動的潛在風險。因此,為了規避金融資產價格的不利波動,股價指數期貨等相關金融期貨應運而生。然而,當投資者決定利用期貨市場進行避險交易時,隨即面臨該持有多少數量的期貨契約這一問題。針對此一個重要課題,學術界與實務界常透過估計最適避險比率,作為從事避險交易之參考。
由以往研究得知,現貨與期貨市場報酬率間存在結構轉變的動態特徵,故最適避險比率之估計應考慮市場不同狀態的波動性。有鑑於此,本文乃嘗試將結構轉換模型應用於最適避險比率之研究,並以1983年至2001年的S&P500指數現貨與指數期貨週報酬率為實證分析之標的。由實證結果發現,最適避險比率於不同的市場波動狀態呈現不對稱的現象,亦即,當市場屬於低波動狀態時,避險比率較高;市場為高波動狀態時,避險比率則較低。應用結構轉換模型除了可以獲得較有效的避險比率外,整體而言,就降低資產組合風險的角度衡量,金融市場參與者可藉由結構轉換模型之設定提高其所持有資產的避險效益。
|
Page generated in 0.0162 seconds