• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

觸犯多款法條之賭博與竊盜案件的法院文書的分類與分析

廖鼎銘, Lia, Ting-Ming Unknown Date (has links)
吾人延續電腦簡易刑事判決技術的研究經驗,以有詞序的關鍵詞做為文件的主要特徵,以instance-based reasoning為核心,並結合其它的推論方法,建立一個混合型的案例式推論系統,來分類賭博以及竊盜的刑事案件。此系統以訓練用案件建立判例資料庫;以introspective learning處理機器學習過程中,對不相干和不正確特徵敏感的問題;以訓練過程中的紀錄,過濾判例資料庫中容易造成錯誤分類的instances;最後還導入專家知識建立法則,幫助案件的分類。實驗結果顯示,新的分類方法在竊盜案件上有良好的表現。 為了幫助未來其它的案件之處理工作,本論文還提出一個自動標記賭博案件語意段落的方法,以朝結構化案件的目標前進。該方法根據關鍵詞特徵建立每種段落的模型,包括起始句與結尾句的規則,再根據段落模型自動標記出段落。實驗結果顯示,語意段落的自動標記值得以其它案由的案件進行嘗試。
2

電腦輔助簡易刑事判決技術之探討 / An Exploration of Computer Assisted Criminal Summary Judgments

張正宗, Cheng-Tsung Chang Unknown Date (has links)
我們以機器學習(Machine Learning)的方法,建立rule-based與case-based的instances,再藉由這些 instances來判斷起訴書的案由和法條,其最好的正確率只比人工建立的rules與cases所判斷的結果低7%而已。由於在我們最基本的方法中,一個判例就會被建立成一個instance,如此,我們將需要大量的空間來儲存instances,針對這個問題,我們也提出了instances clustering與刪除部份較不重要詞這兩個方法,來降低instances所佔的空間,經過簡化的系統的正確率不但與原本未刪減instances時差不多,還可以減少將近一半左右的儲存空間;而且如果我們將這兩個刪減instances的方法混合使用,甚致可以找到一個更好的解,不但能些微提升正確率,還可以把儲存instances所需的空間,降低為原本的四分之一左右。 / I apply machine learning techniques to constructing rule-based and case-based reasoning systems. These systems determine the prosecution reasons and applicable articles of lawsuits, and may achieve an accuracy that is just 7% lower than that achieved by a manually-built system. The baseline method constructs one instance for each prior lawsuit, so it takes much space to store all instances. To reduce the storage space, I propose two methods – clustering instance and removing some less important words in instances. The effects of these methods not only maintain the original accuracy, but also reduce the storage space by half. When I integrated all proposed methods, I can even improve the accuracy slightly and reduce the storage space by three quarters.

Page generated in 0.0265 seconds