1 |
CPFR流程下之銷售預測方法~混合預測模型 / A Hybrid Modeling Approach for Sales Forecasting in CPFR Process黃蘭禎, Huang,Lan Chen Unknown Date (has links)
協同規劃、預測與補貨(Collaborative Planning, Forecasting and Replenishment,CPFR),在歐美經過一些企業的採用後已經有顯著的成效,目前國內已經有一些企業相繼採用或即將採用CPFR,期望能因此降低供應鏈作業成本及提升供應鏈作業績效,以提升企業競爭力。在CPFR流程與供應鏈協同作業環境下,一個供需雙方協同,且績效良好的的銷售預測具有關鍵的重要性,是管理決策與協同合作時的的重要依據;但是多數的企業並沒有一個結構化、系統化的預測流程及方法,而是各部門透過簡單時間序列方法、天真預測法或人為經驗法則估算需求,進行多點且不同方法之預測,這樣的銷售預測較無穩定的品質,亦較難提供管理者合理的數據解釋。本研究結合時間序列、多元回歸模型與基因演算法發展出一個CPFR流程下之三階段混合預測方法,以買賣方直接之銷售資料、銷售計畫等資訊進行以「週」為單位之個別商品銷售預測。同時本研究中,亦以國內某製造業公司與其顧客(一國際大型零售連鎖店通路商)之產品銷售資料進行方法的驗證;實驗顯示,本研究所提出之預測方法之預測結果較Jeong等人(2002)所提結合多元回歸模型與基因演算法之二階段預測系統之預測結果佳;亦較傳統使用普通最小平方法求解之一般統計回歸方法預測結果佳。 / It has been verified in pilot projects by many European and American Corporations that Collaborative Planning, Forecasting and Replenishment (CPFR) can improve supply chain performance. Enterprises nowadays in Taiwan are implementing or going to implement CPFR, with hopes to reduce their supply chain operation cost, enhance logistic performance and increase their competition capability consequently. Under CPFR process and supply chain collaboration environment, a supply and demand both sides promised identical sales forecast with well forecasting performance for order decision making and cooperation is very important. Due to the dynamic complexities of both internal and external co-operate environment, many firms resort to qualitative, navie forecasting or other simple quantitative forecasting techniques and have many forecasts in their organization. However, these forecasting techniques lack the structure and extrapolation capability of quantitative forecasting models or without stable performance, while multi-forecasts providing different views of demand. Forecasting inaccuracies exist and typically lead to dramatic disturbances in sales order and production planning.
This paper presents a hybrid forecasting model for sales forecasting requirements in CPFR. A three stage model is proposed that integrate the time series model, regression model and use genetic algorithm to determine its coefficients efficiently. Direct sales information and related planned events in both collaborated sides is used for individual product’s “week” sales forecasting. To verify this model, we experiment on two different products and produce forecasts with datum from one manufacturer in Taiwan and its international retailer. The results shows that the hybrid sales forecasting model has better forecasting performance than not only the causal-genetic forecasting model proposed by Jeong et al. (2002), but also ordinary regression model with no genetic training process.
|
2 |
CPFR銷售預測模式之探討曾永勝 Unknown Date (has links)
協同規劃、預測與再補貨(Collaborative Planning, Forecasting and Replenishment; CPFR),是目前供應鏈管理下重要的討論議題;台灣近年來由於加入WTO與製造業外移使競爭壓力加劇,全球運籌需求提升,使廠商間的合作更加密切,且近年來企業資訊環境與基礎建設逐漸成熟,有助於協同商務之發展。在CPFR流程與供應鏈協同作業環境下,一個供需雙方協同且績效良好的銷售預測具有關鍵的重要性,是管理決策與協同合作時的重要依據;但是多數的企業並沒有一個結構化、有系統化的預測流程及方法,進行多點且不同方法之預測,這樣的銷售預測較無穩定的品質,亦較難提供管理者合理的數據解釋。
在CPFR流程下,強調買賣雙方透過完整、即時資訊的交流,進行短期、單一銷售預測,以提供雙方後續訂單預測、訂單補貨等決策的依據。本研究利用演算法(類神經網路和演化策略法)找出更適合混合性預測架構的解釋變數,再以較適合於實數解之演化策略法於修改黃蘭禎(2004)的三階段之預測模型架構,最後採用實驗方法,進行模型績效驗證。 / Collaborative Planning, forecasting and replenishment (CPFR) is an important issue of supply chain management currently. Because of the severer competition resulted from entrance into WTO and industry integration, cooperation between Taiwanese companies becomes more intensely; enterprises’ information environment and foundation construction attain to maturity also boost the development of collaboration business. In CPRF process and supply chain operation environment, it is critical that a good performance sale forecasting collaborated by both supplier and buyer sides, and it is also the basis of policy decision and collaboration. However, the majority of the companies lack for a structural and systematical forecasting process to proceed with a multi-points forecasting with different methods. This kind of sale forecasting is less of stable quality and is harder to provide the managers a reasonable statistics explanation.
Under the CPRF process, both buyers and sellers are able to obtain the short-term and single sale forecasting by real time information communication. Furthermore, the follow-up order forecasting and replenishment strategy decision can be also established through this process. This research finds the variables that are more suitable to the mixed structure by usage of the algorithms, ANN and Evolution Strategy. And this research uses Evolution Strategy that is more suitable to real question to improve the mixed structure of Huang (2004). In the end, experimentation is adopted in order to verify the performance of the model.
|
Page generated in 0.0184 seconds