1 |
Fe2VGa摻雜Ti及Si之電子結構跟熱電性質之研究 / Electronic structure and thermoelectric properties of Ti and Si doped Fe2VGa黃大頌, Huang, Ta Sung Unknown Date (has links)
熱電材料被視為其中一種可以解決能源問題的材料,其中具有高功率因子(power factor)的Heusler系統近年來被廣泛的研究。這篇論文中,我們利用取代效應探討鐵釩鎵(Fe2VGa) Heusler系統的熱電性質以及磁性性質,其中包括鈦原子(Ti)取代釩原子(V)跟矽原子(Si)取代鎵原子(Ga)。我們使用電弧熔煉法合成所有樣品,包括Fe2V1-xTixGa (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) 和 Fe2VGa1-xSix (x = 0, 0.05, 0.1, 0.15, 0.2)。在X光繞射的分析中,我們展示了所有樣品都是L21的晶體結構還有每個樣品的晶格常數;同時,我們利用能量分散式光譜儀揭露了樣品的化學計量式。當取代濃度大於0.1時,兩個不同取代系統的功率因子(power factor=S2/ρ)皆會大幅度的提升,這現象可以歸功於能態密度中費米能階的移動。由能帶計算中我們得知鐵釩鎵系統的費米能階坐落在pseudo gap中,然而取代效應使費米能階移出pseudo gap,進而跟能態密度有交錯,導致Seebeck常數上升,而功率因子又與Seebeck常數成平方正比的關係,所以兩個不同取代系統的功率因子皆大幅度的提升。因為合金效應的關係,使所有有取代樣品的傳熱性都大幅度被壓抑,其中Fe2VGa0.8Si0.2的熱傳導性被抑制了兩倍。因為傳熱性的抑制以及同時功率因子的提升,使得Fe2V0.8Ti0.2Ga的熱電優值在420 K時較未被Ti取代之母材Fe2VGa提高了10倍。另外,我們也介由觀察樣品的磁化率以及磁化量探討了這些樣品的磁性性質。 / Thermoelectric application has been considered as a possible solution for electric crises, and, recently, Heusler alloys have been studied for its large power factor near room temperature. In this thesis, we investigate the thermoelectric and magnetic properties of Ti-substituted (p-type) and Si-substituted (n-type) Heusler alloy Fe2VGa. All samples including Fe2V1-xTixGa (with x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) and Fe2VGa1-xSix (with x = 0, 0.05, 0.1, 0.15, 0.2) are prepared through arc-melting method. The X-ray refinement shows their L21 crystal structure and corresponding lattice parameters, while the Energy-dispersive X-ray spectroscopy (EDX) reveals the stoichiometry. With proper substitution, with x > 0.1, the power factor of both systems is dramatically enhanced, which can be attributed to the Fermi level shifting. According to the theoretical calculation for the density of state, the Fermi level of the un-doped sample is located within the pseudogap, while the Fermi level starts to move out the pseudogap since the substituting effect applying, and it will consequently intercept with the conduction or valence band. Due to the alloying effect, the thermal conductivity of Fe2VGa0.8Si0.2 sample is significantly suppressed by a factor of 2. Therefore, we observed that the figure of merit (zT) in Fe2V0.8Ti0.2Ga sample is enhanced by 10 times at 420 K as compared with the parent compound Fe2VGa. Their magnetic properties are also investigated by means of susceptibility and magnetization measurements.
|
2 |
n型鉍-硒-碲及p型鉍-銻-碲熱電材料之製作與研究 / Thermoelectric Properties of n-type Cu0.01Bi2Se0.3Te2.7 and p-type BixSb2-xTe3 (x=0.4-0.6)李政憲, Lee, Cheng Hsien Unknown Date (has links)
找尋新穎的熱電材料是現在許多物理、化學以及材料學家的熱門研究,熱電材料的益處在於可將生活中所產生的廢熱轉化成電能再度利用,可應用在於熱機或是冷凍機之上。
首先,在第一個研究之中,透過布理奇曼法在1050 ℃之下維持10個小時用以製作Cu0.01Bi2Te2.7Se0.3塊材,以及透過水熱法製造出Cu0.01Bi2Te2.7Se0.3奈米粒子,並且將兩種不同尺寸的粒子做不同比例的混合:奈米粒子(粒徑:20~100奈米)重量百分比0、10、20、30和100;接著探討火花電漿燒結法及奈米聚合物對熱電性質之影響。在實驗中發現材料中混入百分之三十的奈米粒子可提升熱電優質係數約一倍,由0.35提升至0.74。若是可以將起初塊材的熱電優質係數提升至較良好的0.7以上,再透過奈米聚合和燒結,其熱電係數在400 K左右是可以超過1的。由這個研究顯示出:火花電漿燒結以及奈米聚合是可以有效的提升熱電優質係數,其主要原因來自於成功的降低熱傳導係數並同時維持住原本所擁有的電阻率以及席貝克係數的提升,而熱傳導降低因於樣品中的奈米結構所造成的粒子邊界增加、晶格的不匹配導致抑制聲子的傳熱所形成的結果。
第二個研究為一樣是透過布理奇曼法在750 ℃之下維持12個小時用以製作BixSb2-xTe3塊材,其中x分別為0.4、0.45、0.5以及0.6,本實驗主要為探討Bi的量對於BiSbTe所造成的影響。由結果中顯示x高於0.5和低於0.5所呈現的熱傳性質的趨勢有些許不同。在x為0.45的塊材中,得到本實驗中在室溫之下,最佳的熱電優質係數1.5,獲得此結果的主要原因來自於相對較低的電阻率,並可觀察到x為0.45的載子濃度高於0.4、0.5和0.6的結果,其將可以佐證x=0.45塊材的低電組率所造成的優質係數提升。 / Physicists, chemists and material scientists at many major universities and research institutions throughout the world are attempting to create novel materials with high thermoelectric (TE) efficiency. It will be beneficial to harvest waste heat into electrical energy. Specialty heating and cooling are other major applications for this class of new TE materials.
In the first study, bulk and nanoparticles of Cu0.01Bi2Te2.7Se0.3 were prepared separately. The Cu0.01Bi2Te2.7Se0.3 bulk was fabricated by Bridgeman method at 1050 ℃ for 10 hrs and the nanoparticles were made through hydrothermal method. Two kinds of powders were mixed with the ratios of NPs 0, 10, 20, 30 and 100 wt% and sintered by the SPS technique to form the composite specimens. The ZT value can be enhanced over 100% from 0.35 to 0.74 for specimen with 30 wt% nanoparticles. The consequence indicates that the SPS process and mixing nanocomposite can effectively enhance ZT value. The enhancements were caused mainly by the presence of nanostructured regions existing within the samples which lowered the thermal conductivity. The phenomenon is due to the presence of significant number of grain boundaries, shorten phonon mean free path and lattice mismatch.
For another investigation, the BixSb2-xTe3 ingots with x=0.4, 0.45, 0.5 and 0.6. were fabricated by Bridgeman method at 750 ℃ for 12 hrs. We studied the effects of amount of Bi in BixSb2-xTe3 and the SPS process on the ZT enhancement. The experiment showed that for x >0.5, the thermal property changed from a curve to a relatively linear line at the end. The best ZT is 1.5 ingot at 300 K for x=0.45 specimen. The significant ZT improvement arises from the much-reduced electric resistivity. The lowest resistivity for x=0.45 specimen is mainly due to the highest carrier concentration than those with x=0.4, 0.5 and 0.6 ingots.
|
3 |
Bi0.5Sb1.5Te3+0.33 wt% aerogel與Cu0.02Bi2Te2.7Se0.3熱電薄膜與元件之熱電性質研究 / Thermoelectric properties of Bi0.5Sb1.5Te3+0.33 wt% aerogel and Cu0.02Bi2Te2.7Se0.3 thermoelectric thin film and device何駿佑, Ho, Chun Yu Unknown Date (has links)
近幾年來,熱電材料蓬勃發展是許多物理、化學以及材料科學家的熱門研究的方向,然而此一跨領域的基礎研究工作處於萌芽的階段。熱電材料的益處在於可將熱機或是冷凍機之上所產生的廢熱轉化成電能。本研究利用鉍化碲(Bismuth Tellurium)在室溫附近具有一熱電優質係數(ZT)為1.0的熱電表現,其具有非常低的熱傳導率以及適當的載子傳輸性質,因此Bi-Te的合金系列成為大家研究的趨勢,成為另一項重大的焦點引發相當的關注。鉍化碲元素皆是地球殼中豐富的元素,且鉍化碲是對人無毒且對環境無害的化合物,相較於其他高性能熱電材料(一般由稀少元素/貴金屬組成),具有非常大商業化的潛力。鉍化碲本身為非常穩定的多層層狀結構(Quintuple Layer),表現出極低的熱傳導率以及良好的導電性。為了未來能製作出微小的熱電模組,本研究利用射頻磁控濺鍍系統(Radio-Frequency Magnetron Sputtering System)調控濺鍍參數的方式,得到最佳熱電性質之薄膜後,再使用半導體製程技術製作微結構的陣列熱電薄膜,利用光微影製程及金屬遮罩兩種分別不同的方式決定所需之電極和薄膜陣列之圖形。本論文使用磁控濺鍍設備,靶材n-type和p-type分別選用Cu0.02Bi2Te2.7Se0.3 和Bi0.5Sb1.5Te3+0.33 wt% Aerogel之熱電材料,經由實驗改變磁控濺鍍的工作壓力、RF power,再透過ZEM-3、EDS對薄膜的研究分析得到(最佳鍍膜參數) 最佳鍍膜品質參數(seebeck、電阻)。決定鍍膜參數後使用本研究開發的兩種方式製作微結構熱電元件,一使用光微影半導體製程,二使用金屬遮罩,針對兩種製程方式所得的n-type和p-type陣列熱電薄膜成長過程做比較與研究探討。 / In recent years, physicists, chemists and material scientists at many major universities and research institutions throughout the world are attempting to create novel materials with high thermoelectric (TE) efficiency. It will be beneficial to harvest waste heat into electrical energy. Especially heating and cooling are other major applications for this class of new TE materials. At present the thermoelectric (TE) material bismuth telluride (Bi2Te3) baesd systems exhibit best figure of merit (ZT). Bismuth and tellurium are earth-abundant elements and Bi2Te3 is non-toxic to human beings and the environment. Therefore, it has great potential in commercial implements. Bismuth telluride is a quintuple layer-structured compound possessing ultralow thermal conductivity and moderate electrical conductivity. In this work, the TE thin film and device are fabricated and optimized by Radio-Frequency Magnetron Sputtering System (RFMSS) and the influence of the preparative parameters such as working pressure and working power of RF sputtering are investigated. In this study, we used the magnetron sputtering equipment and the thermoelectric materials n-type target and p-type target were Cu0.02Bi2Te2.7Se0.3 and Bi0.5Sb1.5Te3+0.33 wt% aerogel, respectively. In this study, the experimental changes the magnetron sputtering working pressure, RF power before the ZEM-3, EDS analysis the thin film thermoelectric properties to get the best thin film quality parameters (Seebeck coefficient, resistivity, power factor). After the thin film parameters were determined, the microstructural thermoelectric 442 pairs device were fabricated by the photolithography semiconductor process, and n-type and p-type arrays used by photolithography to define a pattern and deposit Au electrodes onto the substrate by thermal evaporation.
|
4 |
鉍-銻-碲奈米線之合成、量測與熱電性質 / Synthesis, measurements and thermoelectric properties of BixSb2-xTe3-y nanowires董光平, Dong, Guang Ping Unknown Date (has links)
諸多的研究顯示,和塊材相比,低維度的材料其物理性質會有所不同,為了探究熱電材料在低維度下對其熱電性質所造成的效應,我們合成了BixSb2-xTe3-y奈米線並量測其熱電性質。本實驗藉由熱處理薄膜製備奈米線的方法合成單晶BixSb2-x Te3-y奈米線。我們先利用脈衝雷射沉積系統將BixSb2-x Te3鍍在矽基板上形成薄膜,再將薄膜以350 ℃至490 ℃熱處理5到21天,奈米線即為了平衡因薄膜與矽基板彼此熱膨脹係數不同所造成的應力而自薄膜上長出,其直徑為幾十奈米至幾百奈米不等,長度則為幾微米至幾十微米。為了瞭解奈米線之構成與量測其熱電性質,我們結合微影製程及操縱技術,將單根奈米線架空於附有電極、加熱元件及溫度感測元件之量測平台上,由於奈米線已被架空,我們便能透過選區繞射分析奈米線其結晶性,並使用能量散射分析儀得知奈米線之成分,利用四點量測可得知奈米線的電阻率ρ,以加熱元件在奈米線兩端產生溫差,並量測因西貝克效應 (Seebeck effect) 所造成之電壓差即能得到西貝克係數 S (Seebeck coefficient),三倍頻技術要求所量測的樣品必須要架空於基板上,運用三倍頻技術 (3ω method) 可量測奈米線之熱導率κ及比熱。結合微影製程、操縱技術以及量測系統,我們成功得到單根奈米線的三個熱電係數ρ、S以及κ,並了解低維度對熱電性質所造成的影響。 / Compare with the bulk materials, many researches had revealed that physical properties were different in low dimensional materials. To study the low-dimensional effects on thermoelectric properties of thermoelectric materials, BixSb2-xTe3-y nanowires were synthesized and studied for their thermoelectric properties. Single-crystallized BixSb2-xTe3-y nanowires were synthesized by on-film formation of nanowires. First, BixSb2-xTe3 thin films were deposited on SiO2/Si substrates by using the pulsed laser deposition system. BixSb2-xTe3-y nanowires grew from the films by annealing the films at 350~490 ℃ for 5~21 days through the stress release of the thermal expansion mismatch between the film and the substrate. A series of BixSb2-xTe3-y nanowires were prepared with the diameter from few tens of nanometers to few hundreds of nanometers and the length from few micrometers to few tens of micrometers. In order to analyze the components and measure the thermoelectric properties of the nanowires, the technique of combining microfabrication and manipulation for suspending a single BixSb2-xTe3-y nanowire on a measurement platform with electrodes, heater and thermometers was developed. As long as the wire is suspended, the crystallization of the nanowire is able to be analyzed by the selected area electron diffraction (SAED). The composition of the nanowire can be analyzed by the STEM-EDX. Resistivity ρ is measured by the four-point probe method. In order to get the Seebeck coefficient S, temperature difference were generated by the heater and thermoelectric voltage generated by Seebeck effect were measured. The 3ω method which demands that the wire should be suspended was applied to measure the thermal conductivity κ and specific heat c. By using the developed technique and the measurement system, three thermoelectric parameter ρ, S, κ of a single nanowire were successfully measured and the low-dimensional effect on thermoelectric properties were examined.
|
5 |
半導體Cu3(Sb1-xMx)Se4, M= Ti, Sn, Pb, Ge的摻雜效應對熱電性質的影響 / Doping Effects on Thermoelectric Properties of Semiconductor Cu3(Sb1-xMx)Se4 , M= Ti, Sn, Pb, and Ge張家祥, Chang, Chia Hsiang Unknown Date (has links)
銅銻硒礦是具有 0.3 eV狹窄能帶間隙的P型半導體,且已被發現是在中溫區下極具潛力的熱電材料。銅銻硒礦的晶體結構具有三維銅硒子框架可提供導電的電洞,而有較高的功率因子900 μW/mK2。銻硒四面體結構可藉由其他元素取代銻的位置,扭曲其鑽石結構以達到提高功率因子以及降低熱傳導的目的。理論預測可藉由 IV 族元素鍺、錫、鉛和過渡金屬鈦等元素取代銻來提供電洞載子。本研究藉由燒結與電漿放電製備樣品,探討鈦、錫、鉛、鍺取代銻的熱電效應。
在上述之元素取代效應後,鈦與鉛並沒有帶來顯卓的熱電效應提升,反之錫與鍺能有效地提升電洞載子濃度,然而與摻錫的研究相似的結果已被其他團隊發表,惟鍺的取代效應則尚未被做完整的探討。2 % 鍺的取代有1200μW/mK2的功率因子,相較於母材(900μW/mK2)有 30 % 的提升,因此我們會對鍺的取代效應做完整一系列的研究。摻雜比例從 1~8 % 的結果裡,發現晶格熱傳導係數隨摻雜比例提升減少的合金效應,然而高於 6 % 的取代造成電導大幅提升,使得熱傳導的載子貢獻高於 50% 並嚴重降低載子移動率,致使功率因子大幅衰減與優質係數降低。 4% 的鍺摻雜在提高功率因子與降低熱傳導係數上皆有顯卓的表現,使得優質係數在溫度650 K達到 0.7 相對於母材 (0.54) 有30 %的提升。 / Cu3SbSe4 is a p-type semiconductor with a narrow band gap near 0.3 eV, and has been found to be a promising thermoelectric material at medium temperatures. The crystal structure of Cu3SbSe4 consists a three-dimensional [Cu3Se4] framework acting as electron hole conduction pathway which cause high power factor near 900 μW/mK2. The inserting guest atom to the Sb site of tetrahedral [SbSe4] framework cause a more distorted diamond-like structure, thus providing a relatively lower lattice thermal conductivity in relatively large electric conductivity. According to theoretical predication which are based on the defect formation energy and band structure calculations, p-type doping can be achieved by substituting Sb with group IV elements, as Ge, Sn, and Pb, and transition metals as Ti. This study is investigation of the doping effect in Cu3SbSe4 semiconductor which are prepared by melting and spark plasma sintering.
Herein, we take a close look at the thermoelectric properties of Cu3SbSe4 which are mentioned in previous paragraph. No significant change in results of Ti and Pb. Carrier concentrations are dramatic increasing in results of Sn and Ge, but the results of Sn substitution were already reported by another group. Power factor of Ge substitution is 1,200μW/mK2 which is 30 % more than raw material. We did more study in germanium doping series because it have high power factor which did not be investigated in Cu3SbSe4. Alloy effects, as description of lattice thermal conductivity reducing with doping fraction increasing, are explored in Ge doping fraction from 1 % to 8 %. Although electric conductivity were largely enhanced, figure of merit were reducing by electric contribution of thermal conductivity were higher than 50 % and carrier mobility were significantly reducing when the doping fraction were higher than 4 %. Doping fraction in 4 % have relatively high power factor and relatively low thermal conductivity. Figure of merit in 4 % doping fraction is 0.7, as 30% more than 0.5 of raw material.
|
Page generated in 0.0149 seconds