• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

透過知識翻新活動以提升國小學童對節能減碳概念之理解 / Effects of knowledge building activities on elementary school students’ conception of energy saving and carbon reduction

蔡佩真 Unknown Date (has links)
本研究主要目的在探究知識翻新活動對小學生節能減碳概念理解的影響。以知識翻新理論 (knowledge building) 作為教學核心理念,並以知識論壇(Knowledge Forum,KF)─電腦支援協作學習工具─來輔助與紀錄學生的學習。研究方法採個案研究法,研究對象為台北市某國民小學五年級某班學生(N=34),研究時程為一學年,課程以節能減碳為主題。資料來源包括:(1) 知識論壇上之想法討論與互動歷程;(2)知識論壇平台之溫室效應與節能減碳想法貼文;(3)節能減碳概念理解之測驗。資料分析包括:(1)以知識論壇的分析工具(Analytic Toolkit, 簡稱ATK)分析學生在平台上想法討論與互動的行為;(2)分析學生在平台上所發表的貼文內容之階段性發展,並將學生所討論的概念與環保署所提供的溫室效應與節能減碳國中教材進行比較,以檢測學生所提的概念之完整性與豐富度;(3)使用創造力概念的流暢性、變通性、獨創性、精密性等四個面向,檢驗學生共構的知識品質;(4)分析課程結束後所進行的節能減碳概念測驗,檢測學生在知識翻新活動下對節能減碳概念的理解。研究結果發現:(1)知識翻新教學有助於促進以「想法」為單位的學習與互動模式;(2)知識翻新的學習環境有助於學生共創豐富的知識;(3)在知識翻新的學習環境中,呈現學生的想法數量漸趨減少但品質漸趨提升的情況;(4)讓學生自己翻新知識以主動學習,相較於被動的學習方式,更有助於提升學生在科學學習上的成效。根據上述結論,本研究提出下列幾點建議:(1)教師應重視學生的想法;(2)教師應鼓勵以想法為中心的互動與學習;(3)教師應幫助學生發展創新知識的關鍵能力;(4) 教育相關單位在設計課程與測驗時,更應重視學生的深層理解;(5)教師在教學上應善加利用網路學習資源。 / The purpose of this research was to investigate the effects of knowledge building activities on elementary students’ concepts of energy saving and carbon reduction. Knowledge building pedagogy and Knowledge Forum (KF)─an computer-supported collaborative learning environment─was employed in this study to document the process of students’ idea generation and development. This study employed a case-study design. Participants were a class of fifth graders from an elementary school in Taipei (N=34). They participated in a natural science class for a year and the topic of inquiry was about energy saving and carbon reduction. Data sources included: (1) Students’ online discussion recorded in a KF database; (2) Student’s ideas about energy saving and carbon reduction; (3) Students’ final test about energy saving and carbon reduction. Data analysis include: (1) descriptive analysis using Analytic Toolkit (ATK) and Social Network Analysis to document students’ interactive processes online; (2) qualitative analysis on the content of notes posted in KF; (3) content analysis, using the four aspects of creativitiy--fluency, flexibility, originality, and elaboration--to examine the quality of ideas generated by students; (4) learning assessment using the final comprehension test to evaluate students’ level of understanding about energy saving and carbon reduction in knowledge building environment. The main findings were as follows: (1) Knowledge building instruction was found helpful for supporting students’ work with “ideas”; (2) Knowledge building environment was conducive to knowledge advancement; (3) In the process of knowledge building, it showed the number of ideas was decreasing but the quality of ideas was improved; (4) Knowledge building environment was helpful for students to enhance science learning. Building on the findings, this study made the following suggestions: (1) Teachers should value students’ ideas; (2) Teachers should encourage students to interact and work with ideas; (3) Teachers should help students develop capacity for creating new knowledge; (4) When designing instruction, it is essential to emphasize deeper understanding; (5) Teachers should make good use of the online learning resources.
2

不同電腦支援合作學習環境對師培生在教育理論、教師專業與教學實務等概念學習上之影響 / Effects of different CSCL environments on teacher-education students’ conceptual understanding of theories, expertise and practices in teaching

詹雯靜, Chan, Wen Ching Unknown Date (has links)
本研究旨在探究兩個不同電腦支援合作學習環境,知識論壇平台(Knowledge Forum, KF)與黑板數位學習平台(Blackboard, BB),在支援師培生學習教育理論、教師專業與教學實務等概念過程中之影響。BB的設計主要以一般的學習理論為基礎,KF的設計則是以知識建構(knowledge building)理論為中心。研究設計採混合研究法之橫斷取向策略,研究對象為某國立大學修習一師培必修課程「教育理念與實際之整合」之49位學生。於學期初將研究對象分成二組,其中BB組25人,KF組24人。課程目標主要希望學生在修課後能對自己即將投入之事業,以及對於教學理論、教師專業與教學實務間的關係,能有更深入的瞭解,並進一步反思自己在未來實習階段需要加強之處。 研究資料主要來自兩個數位學習平台上自動存取的紀錄(例如:建立文章次數、對他人文章回覆次數等)、以及學生於兩平台上所發表的文章內容。資料分析主要為推論統計之單因子變異數分析及質性的內容分析法。根據分析結果,本研究提出以下三點結論: 一、兩組學生在相同教師及相同課程設計下,在兩個學習平台上的活動量大致相同,但是於KF環境下學習的學生則表現出較多的成員互動。根據本研究結果推論,會產生此現象是因為BB的平台設計僅提供單一回文機制,供學生對他人的文章做回饋。而KF平台的設計則提供較多元的互動機制,除了可以對他人文章做回應(build-on)外,還可以對別人的文章做註解(annotation)、引用他人文章(reference)、以及統整文章(rise-above)等功能。 二、在學生於教育理論與教學實務間關係概念的理解上,首先,於低層次的理解面向上(主要包含教師要能「知道且理解教學理論」和「應用教學理論」)兩組學生沒有顯著差異。但是,在高層次的理解上(主要為教師要能「分析理論和實務上的關係」),KF組則比BB組表現好。根據本研究結果推論,KF的學習環境可以幫助學生發展更高層次的思考。 三、在學生對教師專業與教學實務間關係概念的理解上,首先,在低層次的理解面向上(主要包含教師要「理解並應用專業於實務」和「從實務中歸納專業為多面向的整合」),兩組學生沒有顯著差異。然而,在較高層次的理解上(主要包含教師要能「分析專業和實務上的關係」和「評鑑、反思自己在專業上的表現」),KF組的表現比BB組好。研究推論KF環境較能幫助提昇學生的概念學習至較成熟的理解層次。 根據上述結論,本研究提出下列四點建議:(1)電腦支援合作式學習環境應發展更多元的文章互動機制;(2)師培教育應更重視師培生對教學理論、教師專業與教學實務間關係的理解;(3)教師選擇使用電腦支援合作式學習環境時,應將是否能幫助學生產生深層理解做為其中考量;以及(4)教師應幫助學生發展知識創新概念。 / This study investigated the effects of two different computer-supported collaborative learning environments, Knowledge Forum (KF) and Blackboard (BB), on teacher-education students’ conceptual understanding of theories, expertise, and practices in teaching. Blackboard is designed generally based on conventional learning theories. In contrast, Knowledge Forum is designed particularly based on knowledge building theory and pedagogy. Participants were 49 students who took a course titled “Integrating Instructional Theory and Practice,” which was offered by a teacher-education program in a national university, Taiwan. The study employed a mixed-method design, with the participants being divided into a BB group (N=25) and a KF group (N=24), with the later serving as an experimental group. The main instructional goal was to help students deepen their understanding of the relationships between theories, expertise and practices in teaching and to become more reflective on their future teaching practice. Data primarily came from students’ online discourse posted in the form of notes and were recorded in the aforementioned two BB and KF databases. To analyze, one-way ANOVA was employed to describe students’ online activities (e.g., number of notes posted) and an open-coding procedure were adapted to content-analyze student notes. There were three main findings as follows: (1) It was found there was no significant difference observed between the two groups in terms of the number of notes posted online in each database. But in terms of interactivity, there were more note linking actives in the KF group than in the BB group. It is suggested that this might be due to the design mechanism of the BB environment being less supportive for discourse interaction among students. In contrast, the KF environment has more design features such as annotations, references, and rise-above to support student interactions. (2) In terms of students’ conceptual understanding of the relationships between theories and practices in teaching, it was found that there were no significant differences between the two groups at the two lower conceptual levels (including teachers should “know and understand most teaching theories” and “be able to put theories into practices”.) But in contrast, it was found that there was a significant difference between the two groups at a higher level of understanding (i.e., teachers should be able to “analyze the relationship between theory and practice”). The findings suggest that as compared with Blackboard, Knowledge Forum seemed to be a more supportive environment that tended to help students achieve a deeper conceptual understanding of the relationships between theories and practices in teaching. (3) In terms of students’ conceptual understanding of the relationships between expertise and practices in teaching, it was found that there were no significant differences between the two groups at the two lower levels (including teachers should “understand the practice and the application of teacher expertise” and be able to “integrate practice into the multifaceted teaching expertise.”) But in contrast, it was found that there was a significant difference between the two groups at a higher level (i.e., teachers should be able to “analyze the relationships between teacher expertise and teaching practice” and “evaluate, reflect on their own professional performance.”) The findings suggest that Knowledge Forum seemed to be a more supportive environment capable of helping students achieve a higher level of conceptual understanding of the relationships between teacher expertise and practices in teaching. Building on the above results, this study made the following four suggestions: (1) a good computer-supported collaborative learning environment should include necessary design features that support multiple interactive mechanisms; (2) teacher education program should help its students develop deeper conceptual understanding of educational theories, teacher expertise, and teaching practices; (3) teachers should be equipped with the necessary knowledge in order to choose a good computer-supported collaborative learning environment to support teaching; and (4) Teacher education program should help its students develop more knowledge building oriented concepts towards teaching and learning.

Page generated in 0.0206 seconds