1 |
利用近紅外光影像之近景攝影測量建立數值表面模型之研究 / Construction of digital surface model using Near-IR close range photogrammetry廖振廷, Liao, Chen Ting Unknown Date (has links)
點雲(point cloud)為以大量三維坐標描述地表實際情形的資料形式,其中包含其三維坐標及相關屬性。通常點雲資料取得方式為光達測量,其以單一波段雷射光束掃描獲取資料,以光達獲取點雲,常面臨掃描時間差、缺乏多波段資訊、可靠邊緣線及角點資訊、大量離散點雲又缺乏語意資訊(semantic information)難以直接判讀及缺乏多餘觀測量等問題。
攝影測量藉由感測反射自太陽光或地物本身放射之能量,可記錄為二維多光譜影像,透過地物在不同光譜範圍表現之特性,可輔助分類,改善分類成果。若匹配多張高重疊率的多波段影像,可以獲取包含多波段資訊且位於明顯特徵點上的點雲,提供光達以外的點雲資料來源。
傳統空中三角測量平差解算地物點坐標及產製數值表面模型(Digital Surface Model, DSM)時,多採用可見光影像為主;而目前常見之高空間解析度數值航照影像,除了記錄可見光波段之外,亦可蒐集近紅外光波段影像。但較少採用近紅外光波段影像,以求解地物點坐標及建立DSM。
因此本研究利用多波段影像所蘊含的豐富光譜資訊,以取像方式簡易及低限制條件的近景攝影測量方式,匹配多張可見光、近紅外光及紅外彩色影像,分別建立可見光、近紅外光及紅外彩色之DSM,其目的在於探討加入近紅外光波段後,所產生的近紅外光及紅外彩色DSM,和可見光DSM之異同;並比較該DSM是否更能突顯植被區。
研究顯示,以可見光點雲為檢核資料,計算近紅外光與紅外彩色點雲的均方根誤差為其距離門檻值之相對檢核方法,可獲得約21%的點雲增加率;然而使用近紅外光或紅外彩色影像,即使能增加點雲資料量,但對於增加可見光影像未能匹配的資料方面,其效果仍屬有限。 / Point cloud represents the surface as mass 3D coordinates and attributes. Generally, these data are usually collected by LIDAR (LIght Detection And Ranging), which acquires data through single band laser scanning. But the data collected by LIDAR could face problems, such as scanning process is not instantaneous, lack of multispectral information, breaklines, corners, semantic information and redundancies.
However, photogrammetry record the electromagnetic energy reflected or emitted from the surface as 2D multispectral images, via ground features with different characteristics differ in spectrum, it can be classified more efficiently and precisely. By matching multiple high overlapping multispectral images, point cloud including multispectral information and locating on obvious feature points can be acquired. This provides another point cloud source aparting from LIDAR.
In most studies, visible light (VIS) images are used primarily, while calculating ground point coordinates and generating digital surface models (DSM) through aerotriangulation. Although nowadays, high spatial resolution digital aerial images can acquire not only VIS channel, but also near infrared (NIR) channel as well. But there is lack of research doing the former procedures by using NIR images.
Therefore, this research focuses on the rich spectral information in multispectral images, by using easy image collection and low restriction close range photogrammetry method. It matches several VIS, NIR and color infrared (CIR) images, and generate DSMs respectively. The purpose is to analyze the difference between VIS, NIR and CIR data sets, and whether it can emphasize the vegetation area, after adding NIR channel in DSM generation.
The result shows that by using relative check points between NIR, CIR data with VIS one. First, VIS point cloud was set as check point data, then, the RMSE (Root Mean Square Error) of NIR and CIR point cloud was calculated as distance threshold. Its data increment is 21% ca. However, the point cloud data amount can be increased, by matching NIR and CIR images. But the effect of increasing data, which was not being matched from VIS images are limited.
|
Page generated in 0.0377 seconds